当前期刊: BMC Neuroscience Go to current issue    加入关注   
显示样式:        排序: 导出
  • Capturing multiple interaction effects in L1 and L2 object-naming reaction times in healthy bilinguals: a mixed-effects multiple regression analysis
    BMC Neurosci. (IF 2.62) Pub Date : 2020-01-17
    Severin Schramm; Noriko Tanigawa; Lorena Tussis; Bernhard Meyer; Nico Sollmann; Sandro M. Krieg

    It is difficult to set up a balanced higher-order full-factorial experiment that can capture multiple intricate interactions between cognitive and psycholinguistic factors underlying bilingual speech production. To capture interactions more fully in one study, we analyzed object-naming reaction times (RTs) by using mixed-effects multiple regression. Ten healthy bilinguals (median age: 23 years, seven females) were asked to name 131 colored pictures of common objects in each of their languages. RTs were analyzed based on language status, proficiency, word choice, word frequency, word duration, initial phoneme, time series, and participant’s gender. Among five significant interactions, new findings include a facilitating effect of a cross-language shared initial phoneme (mean RT for shared phoneme: 974 ms vs. mean RT for different phoneme: 1020 ms), which profited males less (mean profit: 10 ms) than females (mean profit: 47 ms). Our data support language-independent phonological activation and a gender difference in inhibitory cognitive language control. Single word production process in healthy adult bilinguals is affected by interactions among cognitive, phonological, and semantic factors.

  • Folic acid ameliorates depression-like behaviour in a rat model of chronic unpredictable mild stress
    BMC Neurosci. (IF 2.62) Pub Date : 2020-01-15
    Yue Zhou; Yu Cong; Huan Liu

    Depression is characterized by significant and low mood. Classical antidepressants are still not adequate in treating depression because of undesirable side effects. Folic acid, a member of the vitamin B complex, in considered to be strongly associated with the function and development of the central nervous system. Thus, in this study, we established a model of depression through chronic unpredictable mild stress (CUMS) in rats and assessed the antidepressant effects and mechanisms of folic acid. Sprague–Dawley rats were randomly divided into four groups: control, chronic unpredictable mild stress (CUMS), CUMS treated with folic acid, and CUMS treated with citalopram. Rats were assessed in terms of weight change, open-field test and sucrose preference. Homocysteine, monoamine neurotransmitters, interleukin-6, brain-derived neurotrophic factor (BDNF), β-endorphin levels in the serum and brains of rats were analysed. Folic acid exhibited antidepressant-like effects in open-field and sucrose preference tests. Folic acid treatment effectively increased the levels of monoamine neurotransmitters, BDNF and β-endorphin, interleukin-6 and homocysteine levels were also significantly suppressed by folic acid administration. These findings serve as preclinical evidence that folic acid plays an antidepressant-like role in several pathways involving monoamine neurotransmitters. Thus, folic acid may be used as a potential antidepressant.

  • Proteomics profiling and pathway analysis of hippocampal aging in rhesus monkeys
    BMC Neurosci. (IF 2.62) Pub Date : 2020-01-15
    Shu Meng; Wenchao Xia; Meng Pan; Yangjie Jia; Zhanlong He; Wei Ge

    Aged rhesus monkeys exhibit deficits in memory mediated by the hippocampus. Although extensive research has been carried out on the characteristics of human hippocampal aging, there is still very little scientific understanding of the changes associated with hippocampal aging in rhesus monkeys. To explore the proteomics profiling and pathway-related changes in the rhesus hippocampus during the aging process, we conducted a high throughput quantitative proteomics analysis of hippocampal samples from two groups of rhesus macaques aged 6 years and 20 years, using 2-plex tandem mass tag (TMT) labeling. In addition, we used a comprehensive bioinformatics analysis approach to investigate the enriched signaling pathways of differentially expressed proteins (the ratios of 20-years vs. 6-years, ≥ 1.20 or ≤ 0.83). In total, 3260 proteins were identified with a high level of confidence in rhesus hippocampus. We found 367 differentially expressed proteins related to rhesus hippocampus aging. Based on biological pathway analysis, we found these aging-related proteins were predominantly enriched in the electron transport chain, NRF2 pathway, focal adhesion–PI3K–AKT–mTOR signaling pathway and cytoplasmic ribosome proteins. Data are available via ProteomeXchange with identifier PXD011398. This study provides a detail description of the proteomics profile related to rhesus hippocampal aging. These findings should make an important contribution to further mechanistic studies, marker selection and drug development for the prevention and treatment of aging or age-related neurodegeneration.

  • Altered functional connectivity of the nucleus accumbens subdivisions in amphetamine-type stimulant abusers: a resting-state fMRI study
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-30
    Yun Wang; Kai-Juan Yan; Chen-Xiao Fan; Xiao-Nian Luo; Yuan Zhou

    The growing abuse of amphetamine-type stimulants leads to new challenges to human health. A possible addiction mechanism has been proposed by altered functional architecture of the nucleus accumbens (NAc) during resting state. NAc contains different subdivisions and they may play different roles in addiction. The aim of the present study was to examine whether there are common or distinct patterns of functional connectivity of the NAc subdivisions in amphetamine-type stimulant abusers (ATSAs). The present study recruited 17 male ATSAs and 22 healthy male controls. All the subjects underwent resting-state functional magnetic resonance imaging (fMRI) with their eyes closed. The NAc was divided into core-like and shell-like subdivisions. We used seed-based resting-state functional connectivity (RSFC) analyses to identify differences in brain functional architecture between ATSAs and healthy controls (HCs). ATSAs had lower positive RSFCs with all of the NAc subdivisions over the left orbital part of superior frontal gyrus and higher positive RSFCs with the NAc subdivisions over the left opercular part of inferior frontal gyrus than HCs, which indicates common abnormalities across the NAc subdivisions in ATSAs. In addition, the RSFCs between the NAc subdivisions and the left orbital part of superior frontal gyrus were negatively correlated with the addiction severity in ATSAs. These results provide evidence that there are common RSFC patterns of the NAc subdivisions in ATSAs. The abnormality indicated by disrupted functional connectivity between the NAc subdivisions and prefrontal cortex suggests abnormal interaction between the rewarding process and cognitive control in ATSAs. Our results shed insight on the neurobiological mechanisms of ATSA and suggest potential novel therapeutic targets for treatment and intervention of ATSAs.

  • Lipopolysaccharide worsens the prognosis of experimental cerebral ischemia via interferon gamma-induced protein 10 recruit in the acute stage
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-27
    Ping Wang; Jiaqi Zhang; Feifei Guo; Shuang Wang; Yi Zhang; Defeng Li; Haiyu Xu; Hongjun Yang

    Infection is an important clinical complication facing stroke-patients and triples the risk of death within 30 days post-stroke via mechanisms which are poorly understood. We tried to explore the mechanisms that inflammation caused by infections aggravated the ischemic brain injury after middle cerebral artery occlusion (MCAO). We used lipopolysaccharide (LPS) as systemic inflammatory stimuli to explore the mechanisms of aggravated ischemic brain injury after Sprague-Dawley male rats subjected to MCAO. Brain damage was evaluated by cerebral blood perfusion, Longa-5 scores, infarct volume and edema degree. Systemic cytokine responses and inflammatory changes in the plasma and brain were analyzed by ELISA kit, RT2 Profiler™ PCR array, and quantitative real-time PCR. The differential genes were subjected to Gene Ontology enrichment analysis and protein–protein interaction (PPI) network construction. Lipopolysaccharide profoundly aggravated the brain damage after 24 h post-MCAO. At the acute stage (ischemia/reperfusion 90 min/3 h), the brain homogenate gene expression of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and Interferon gamma-induced protein 10 (IP-10) was significantly up-regulated and the contents in plasma and brain homogenate were significantly increased in MCAO and MCAO + LPS group. IP-10 was the only gene with significant difference between MCAO and MCAO + LPS group, which was also in an important position with degrees of ≥ 14 in PPI network. It was possible that trace LPS aggravated the ischemic brain injury by induction of excessive IP-10 secretion in the acute stage, leading to excessive inflammatory response, which consequently increased the infarct volume and edema degree 24 h post-MCAO.

  • The Bdnf and Npas4 genes are targets of HDAC3-mediated transcriptional repression
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-28
    Anto Sam Crosslee Louis Sam Titus; Dharmendra Sharma; Min Soo Kim; Santosh R. D’Mello

    Histone deacetylase-3 (HDAC3) promotes neurodegeneration in various cell culture and in vivo models of neurodegeneration but the mechanism by which HDAC3 exerts neurotoxicity is not known. HDAC3 is known to be a transcriptional co-repressor. The goal of this study was to identify transcriptional targets of HDAC3 in an attempt to understand how it promotes neurodegeneration. We used chromatin immunoprecipitation analysis coupled with deep sequencing (ChIP-Seq) to identify potential targets of HDAC3 in cerebellar granule neurons. One of the genes identified was the activity-dependent and neuroprotective transcription factor, Neuronal PAS Domain Protein 4 (Npas4). We confirmed using ChIP that in healthy neurons HDAC3 associates weakly with the Npas4 promoter, however, this association is robustly increased in neurons primed to die. We find that HDAC3 also associates differentially with the brain-derived neurotrophic factor (Bdnf) gene promoter, with higher association in dying neurons. In contrast, association of HDAC3 with the promoters of other neuroprotective genes, including those encoding c-Fos, FoxP1 and Stat3, was barely detectable in both healthy and dying neurons. Overexpression of HDAC3 leads to a suppression of Npas4 and Bdnf expression in cortical neurons and treatment with RGFP966, a chemical inhibitor of HDAC3, resulted in upregulation of their expression. Expression of HDAC3 also repressed Npas4 and Bdnf promoter activity. Our results suggest that Bdnf and Npas4 are transcriptional targets of Hdac3-mediated repression. HDAC3 inhibitors have been shown to protect against behavioral deficits and neuronal loss in mouse models of neurodegeneration and it is possible that these inhibitors work by upregulating neuroprotective genes like Bdnf and Npas4.

  • Inhibition of autophagy triggers melatonin-induced apoptosis in glioblastoma cells
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-23
    Nan Zhou; Zi Xuan Wei; Zeng Xin Qi

    Autophagy is considered to be another restorative focus for the treatment of brain tumors. Although several research have demonstrated that melatonin induces autophagy in colon cancer and hepatoma cells, there has not been any direct evidence of whether melatonin is capable of inducing autophagy in human glioma cells. In the present research, we report that melatonin or its agonist, agomelatine, induced autophagy in A172 and U87-MG glioblastoma cells for a concentration-and time-dependent way, which was significantly attenuated by treatment with luzindole, a melatonin receptor antagonist. Furthermore, by suppressing autophagy at the late-stage with bafilomycin A1 and early stage with 3-MA, we found that the melatonin-induced autophagy was activated early, and the autophagic flux was complete. Melatonin treatment alone did not induce any apoptotic changes in the glioblastoma cells, as measured by flow cytometry. Western blot studies confirmed that melatonin alone prominently upregulated the levels of Beclin 1 and LC3 II, which was accompanied by an increase in the expression of Bcl-2, whereas it had no effect on the expression of Bax in the glioblastoma cells. Remarkably, co-treatment with 3-MA and melatonin significantly enhanced the apoptotic cell population in the glioblastoma cells, along with a prominent decrease in the expression of bcl-2 and increase in the Bax expression levels, which collectively indicated that the disruption of autophagy triggers the melatonin-induced apoptosis in glioblastoma cells. These results provide information indicating that melatonin may act as a common upstream signal between autophagy and apoptosis, which may lead to the development of new therapeutic strategies for glioma.

  • Amiodarone exacerbates brain injuries after hypoxic–ischemic insult in mice
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-21
    Masakazu Kotoda; Sohei Hishiyama; Tadahiko Ishiyama; Kazuha Mitsui; Takashi Matsukawa

    Sodium ion transportation plays a crucial role in the pathogenesis of hypoxic–ischemic brain injury. Amiodarone, a Vaughan-Williams class III antiarrhythmic drug, has been widely used to treat life-threatening arrhythmia and cardiac arrest worldwide. In addition to its inhibitory effects on the potassium channel, amiodarone also blocks various sodium ion transporters, including the voltage-gated sodium channel, sodium pump, and Na+/Ca+ exchanger. Considering these pharmacological profile, amiodarone may affect the influx–efflux balance of sodium ion in the hypoxic–ischemic brain. Previous studies suggest that the blockade of the voltage-gated sodium channel during hypoxic–ischemic brain injury exerts neuroprotection. On the contrary, the blockade of sodium pump or Na+/Ca+ exchanger during hypoxia–ischemia may cause further intracellular sodium accumulation and consequent osmotic cell death. From these perspectives, the effects of amiodarone on sodium ion balance on the hypoxic–ischemic brain can be both protective and detrimental depending on the clinical and pathophysiological conditions. In this study, we therefore investigated the effect of amiodarone on hypoxic–ischemic brain injury using a murine experimental model. Compared with the control group mice, mice that received amiodarone after induction of 40-min hypoxic–ischemic brain injury exhibited lower survival rates over 7 days and worse neurological function. After 25-min hypoxic–ischemic brain injury, amiodarone treated mice exhibited larger infarct volumes (16.0 ± 6.9 vs. 24.2 ± 6.8 mm3, P < 0.05) and worse neurological function. In addition, the brains harvested from the amiodarone-treated mice contained larger amounts of sodium (194.7 ± 45.1 vs. 253.5 ± 50.9 mEq/kg dry weight, P < 0.01) and water (259.3 ± 8.9 vs. 277.2 ± 12.5 mg, P < 0.01). There were no significant differences in hemodynamic parameters between groups. Amiodarone exacerbated brain injuries and neurological outcomes after hypoxic–ischemic insults. Severe brain sodium accumulation and brain edema were associated with the detrimental effects of amiodarone. Amiodarone at the clinical dose can exacerbate brain injury after hypoxic–ischemic insult by affecting sodium ion transportation and facilitate intracellular sodium accumulation in the brain.

  • Chondroitinase ABC reduces dopaminergic nigral cell death and striatal terminal loss in a 6-hydroxydopamine partial lesion mouse model of Parkinson’s disease
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-20
    Edward J. R. Fletcher; Lawrence D. F. Moon; Susan Duty

    Parkinson’s disease (PD) is characterised by dopaminergic cell loss within the substantia nigra pars compacta (SNc) that leads to reduced striatal dopamine content and resulting motor deficits. Identifying new strategies to protect these cells from degeneration and retain striatal dopaminergic innervation is therefore of great importance. Chondroitin sulphate proteoglycans (CSPGs) are recognised contributors to the inhibitory extracellular milieu known to hinder tissue recovery following CNS damage. Digestion of these molecules by the bacterial lyase chondroitinase ABC (ChABC) has been shown to promote functional recovery in animal models of neurological injury. Although ChABC has been shown to promote sprouting of dopaminergic axons following transection of the nigrostriatal pathway, its ability to protect against nigrostriatal degeneration in a toxin-based module with better construct validity for PD has yet to be explored. Here we examined the neuroprotective efficacy of ChABC treatment in the full and partial 6-hydroxydopamine (6-OHDA) lesion mouse models of PD. In mice bearing a full 6-OHDA lesion, ChABC treatment failed to protect against the loss of either nigral cells or striatal terminals. In contrast, in mice bearing a partial 6-OHDA lesion, ChABC treatment significantly protected cells of the rostral SNc, which remained at more than double the numbers seen in vehicle-treated animals. In the partial lesion model, ChABC treatment also significantly preserved dopaminergic fibres of the rostral dorsal striatum which increased from 15.3 ± 3.5% of the intact hemisphere in saline-treated animals to 36.3 ± 6.5% in the ChABC-treated group. These protective effects of ChABC treatment were not accompanied by improvements in either the cylinder or amphetamine-induced rotations tests of motor function. ChABC treatment provided significant protection against a partial 6-OHDA lesion of the nigrostriatal tract although the degree of protection was not sufficient to improve motor outcomes. These results support further investigations into the benefits of ChABC treatment for providing neuroprotection in PD.

  • Ketamine affects the integration of developmentally generated granule neurons in the adult stage
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-18
    Zhanqiang Zhao; Bing Li; Yuqing Wu; Xujun Chen; Yan Guo; Yang Shen; He Huang

    Ketamine has been reported to cause neonatal neurotoxicity in a variety of developing animal models. Various studies have been conducted to study the mechanism of neurotoxicity for general anesthetic use during the neonatal period. Previous experiments have suggested that developmentally generated granule neurons in the hippocampus dentate gyrus (DG) supported hippocampus-dependent memory. Therefore, this study aimed to investigate whether ketamine affects the functional integration of developmentally generated granule neurons in the DG. For this purpose,the postnatal day 7 (PND-7) Sprague-Dawley (SD) rats were divided into the control group and the ketamine group (rats who received 4 injections of 40 mg/kg ketamine at 1 h intervals). To label dividing cells, BrdU was administered for three consecutive days after the ketamine exposure; NeuN+/BrdU+cells were observed by using immunofluorescence. To evaluate the developmentally generated granule neurons that support hippocampus-dependent memory, spatial reference memory was tested by using Morris Water Maze at 3 months old, after which the immunofluorescence was used to detect c-Fos expression in the NeuN+/BrdU+ cells. The expression of caspase-3 was measured by western blot to detect the apoptosis in the hippocampal DG. The present results showed that the neonatal ketamine exposure did not influence the survival rate of developmentally generated granule neurons at 2 and 3 months old, but ketamine interfered with the integration of these neurons into the hippocampal DG neural circuits and caused a deficit in hippocampal-dependent spatial reference memory tasks. In summary, these findings may promote more studies to investigate the neurotoxicity of ketamine in the developing brain.

  • LPS immune challenge reduces arcuate nucleus TSHR and CART mRNA and elevates plasma CART peptides
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-11
    Jonathan R. Burgos; Britt-Marie Iresjö; Linda Olsson; Ulrika Smedh

    The aim was to examine the impact of lipopolysaccharide-induced systemic inflammation on expression of mRNA for cocaine- and amphetamine-regulated transcript (CART) and the thyrotropin receptor (TSHR) and its ligands in CNS areas of relevance for feeding controls and metabolism. Lipopolysaccharide effects on plasma levels of TSH and CART peptides were also examined. Lipopolysaccharide (150–200 μg/mouse) was injected in C57BL/6J mice and tissue and plasma samples taken after 24 h. To establish if plasma increase in CART peptide levels were prostanoid dependent, indomethacin was given via the drinking water beginning 48 h prior to LPS. We evaluated mRNA expression for CART, TSHR, TSHβ, and thyrostimulin in brain and pituitary extracts. Plasma levels of TSH, CARTp, and serum amyloid P component were analyzed by ELISA. Lipopolysaccharide suppressed TSHR mRNA expression in the arcuate nucleus and the pituitary. CART mRNA expression was reduced in the arcuate nucleus but elevated in the pituitary of mice treated with Lipopolysaccharide, whereas plasma TSH remained unchanged. Plasma CART peptide concentration increased after LPS treatment in a prostanoid-independent manner, and CART peptide levels correlated positively to degree of inflammation. Our findings suggest that central and peripheral CART is affected by acute inflammation. Considering the role of the arcuate nucleus in feeding controls, our data highlight TSHR and CART as putative neuroendocrine signaling components that respond to inflammation, perhaps to maintain weight and metabolic homeostasis during states of disease.

  • Localization of phosphotyrosine adaptor protein ShcD/SHC4 in the adult rat central nervous system
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-10
    Hannah N. Robeson; Hayley R. Lau; Laura A. New; Jasmin Lalonde; John N. Armstrong; Nina Jones

    Mammalian Shc (Src homology and collagen) proteins comprise a family of four phosphotyrosine adaptor molecules which exhibit varied spatiotemporal expression and signaling functions. ShcD is the most recently discovered homologue and it is highly expressed in the developing central nervous system (CNS) and adult brain. Presently however, its localization within specific cell types of mature neural structures has yet to be characterized. In the current study, we examine the expression profile of ShcD in the adult rat CNS using immunohistochemistry, and compare with those of the neuronally enriched ShcB and ShcC proteins. ShcD shows relatively widespread distribution in the adult brain and spinal cord, with prominent levels of staining throughout the olfactory bulb, as well as in sub-structures of the cerebellum and hippocampus, including the subgranular zone. Co-localization studies confirm the expression of ShcD in mature neurons and progenitor cells. ShcD immunoreactivity is primarily localized to axons and somata, consistent with the function of ShcD as a cytoplasmic adaptor. Regional differences in expression are observed among neural Shc proteins, with ShcC predominating in the hippocampus, cerebellum, and some fiber tracts. Interestingly, ShcD is uniquely expressed in the olfactory nerve layer and in glomeruli of the main olfactory bulb. Together our findings suggest that ShcD may provide a distinct signaling contribution within the olfactory system, and that overlapping expression of ShcD with other Shc proteins may allow compensatory functions in the brain.

  • Diazepam and ethanol differently modulate neuronal activity in organotypic cortical cultures
    BMC Neurosci. (IF 2.62) Pub Date : 2019-12-10
    Matthias Kreuzer; Paul S. García; Verena Brucklacher-Waldert; Rebecca Claassen; Gerhard Schneider; Bernd Antkowiak; Berthold Drexler

    The pharmacodynamic results of diazepam and ethanol administration are similar, in that each can mediate amnestic and sedative-hypnotic effects. Although each of these molecules effectively reduce the activity of central neurons, diazepam does so through modulation of a more specific set of receptor targets (GABAA receptors containing a γ-subunit), while alcohol is less selective in its receptor bioactivity. Our investigation focuses on divergent actions of diazepam and ethanol on the firing patterns of cultured cortical neurons. We used electrophysiological recordings from organotypic slice cultures derived from Sprague–Dawley rat neocortex. We exposed these cultures to either diazepam (15 and 30 µM, n = 7) or ethanol (30 and 60 mM, n = 11) and recorded the electrical activity at baseline and experimental conditions. For analysis, we extracted the episodes of spontaneous activity, i.e., cortical up-states. After separation of action potential and local field potential (LFP) activity, we looked at differences in the number of action potentials, in the spectral power of the LFP, as well as in the coupling between action potential and LFP phase. While both substances seem to decrease neocortical action potential firing in a not significantly different (p = 0.659, Mann–Whitney U) fashion, diazepam increases the spectral power of the up-state without significantly impacting the spectral composition, whereas ethanol does not significantly change the spectral power but the oscillatory architecture of the up-state as revealed by the Friedman test with Bonferroni correction (p < 0.05). Further, the action potential to LFP-phase coupling reveals a synchronizing effect of diazepam for a wide frequency range and a narrow-band de-synchronizing effect for ethanol (p < 0.05, Kolmogorov–Smirnov test). Diazepam and ethanol, induce specific patterns of network depressant actions. Diazepam induces cortical network inhibition and increased synchronicity via gamma subunit containing GABAA receptors. Ethanol also induces cortical network inhibition, but without an increase in synchronicity via a wider span of molecular targets.

  • Exercise challenge alters Default Mode Network dynamics in Gulf War Illness
    BMC Neurosci. (IF 2.62) Pub Date : 2019-02-21
    Rakib U. Rayhan; Stuart D. Washington; Richard Garner; Kristina Zajur; Florencia Martinez Addiego; John W. VanMeter; James N. Baraniuk

    Gulf War Illness (GWI) affects 30% of veterans from the 1991 Gulf War and has no known cause. Everyday symptoms include pain, fatigue, migraines, and dyscognition. A striking syndromic feature is post-exertional malaise (PEM). This is recognized as an exacerbation of everyday symptoms following a physically stressful or cognitively demanding activity. The underlying mechanism of PEM is unknown. We previously reported a novel paradigm that possibly captured evidence of PEM by utilizing fMRI scans taken before and after sub-maximal exercises. We hypothesized that A) exercise would be a sufficient physically stressful activity to induce PEM and B) Comparison of brain activity before and after exercise would provide evidence of PEM’s effect on cognition. We reported two-exercise induced GWI phenotypes with distinct changes in brain activation patterns during the completion of a 2-back working memory task (also known as two-back > zero-back). Here we report unanticipated findings from the reverse contrast (zero-back > two-back), which allowed for the identification of task-related deactivation patterns. Following exercise, patients developed a significant increase in deactivation patterns within the Default Mode Network (DMN) that was not seen in controls. The DMN is comprised of regions that are consistently down regulated during external goal-directed activities and is often altered within many neurological disease states. Exercise-induced alterations within the DMN provides novel evidence of GWI pathophysiology. More broadly, results suggest that task-related deactivation patterns may have biomarker potential in Gulf War Illness.

  • Enhanced setup for wired continuous long-term EEG monitoring in juvenile and adult rats: application for epilepsy and other disorders
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-04
    Yasser Medlej; Rita Asdikian; Lara Wadi; Houssein Salah; Laura Dosh; Rabih Hashash; Nabil Karnib; Mohammad Medlej; Hala Darwish; Firas Kobeissy; Makram Obeid

    The electroencephalogram (EEG) is a widely used laboratory technique in rodent models of epilepsy, traumatic brain injury (TBI), and other neurological diseases accompanied by seizures. Obtaining prolonged continuous EEG tracings over weeks to months is essential to adequately answer research questions related to the chronobiology of seizure emergence, and to the effect of potential novel treatment strategies. Current EEG recording methods include wired and the more recent but very costly wireless technologies. Wired continuous long-term EEG in rodents remains the mainstay approach but is often technically challenging due to the notorious frequent EEG cable disconnections from the rodent’s head, and to poor signal-to-noise ratio especially when simultaneously monitoring multiple animals. Premature EEG cable disconnections and cable movement-related artifacts result from the animal’s natural mobility, and subsequent tension on the EEG wires, as well as from potential vigorous and frequent seizures. These challenges are often accompanied by injuries to the scalp, and result in early terminations of costly experiments. Here we describe an enhanced customized swivel-balance EEG-cage system that allows tension-free rat mobility. The cage setup markedly improves the safety and longevity of current existing wired continuous long-term EEG. Prevention of EEG cable detachments is further enhanced by a special attention to surgical electrode anchoring to the skull. In addition to mechanically preventing premature disconnections, the detailed stepwise approach to the electrical shielding, wiring and grounding required for artifact-free high signal-to-noise ratio recordings is also included. The successful application of our EEG cage system in various rat models of brain insults and epilepsy is described with illustrative high quality tracings of seizures and electrographic patterns obtained during continuous and simultaneous monitoring of multiple rats early and up to 3 months post-brain insult. Our simple-to-implement key modifications to the EEG cage setup allow the safe acquisition of substantial high quality wired EEG data without resorting to the still costly wireless technologies.

  • The short-term recovery of corticomotor responses in elbow flexors
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-14
    Saied Jalal Aboodarda; Selina Fan; Kyla Coates; Guillaume Y. Millet

    The recovery of neurophysiological parameters at various time intervals following fatiguing exercise has been investigated previously. However, the repetition of neuromuscular assessments during the recovery period may have interfered with the true corticomotor excitability responses. In this experiment, fatiguing contractions were combined with a single post-fatigue assessment at varying time points. Ten participants undertook 5 bouts of 60-s maximal voluntary contractions (MVC) of the elbow flexors, separated by 20 min. Before and after each 60-s fatiguing exercise (FAT), participants performed a series of 6-s contractions at 100, 75 and 50% of their MVC during which transcranial magnetic, transmastoid electrical and brachial plexus electrical stimuli were used to elicit motor evoked potentials (MEP), cervicomedullary motor evoked potentials (CMEP) and compound muscle action potentials (Mmax) in the biceps brachii muscle, respectively. Post-FAT measurements were randomly performed 0, 15, 30, 60, or 120 s after each FAT. MVC force declined to 65.1 ± 13.1% of baseline following FAT and then recovered to 82.7 ± 10.2% after 60 s. The MEP·Mmax−1 ratio recorded at MVC increased to 151.1 ± 45.8% and then returned to baseline within 60 s. The supraspinal excitability (MEP·CMEP−1) measured at MVC increased to 198.2 ± 47.2% and fully recovered after 30 s. The duration of post-MEP silent period recorded at MVC elongated by 23.4 ± 10.6% during FAT (all P < 0.05) but fully recovered after 15 s. The current study represents the first accurate description of the time course and pattern of recovery for supraspinal and spinal excitability and inhibition following a short maximal fatiguing exercise in upper limb.

  • Effect of lesion proximity on the regenerative response of long descending propriospinal neurons after spinal transection injury
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-18
    Kristen Swieck; Amanda Conta-Steencken; Frank A. Middleton; Justin R. Siebert; Donna J. Osterhout; Dennis J. Stelzner

    The spinal cord is limited in its capacity to repair after damage caused by injury or disease. However, propriospinal (PS) neurons in the spinal cord have demonstrated a propensity for axonal regeneration after spinal cord injury. They can regrow and extend axonal projections to re-establish connections across a spinal lesion. We have previously reported differential reactions of two distinct PS neuronal populations—short thoracic propriospinal (TPS) and long descending propriospinal tract (LDPT) neurons—following a low thoracic (T10) spinal cord injury in a rat model. Immediately after injury, TPS neurons undergo a strong initial regenerative response, defined by the upregulation of transcripts to several growth factor receptors, and growth associated proteins. Many also initiate a strong apoptotic response, leading to cell death. LDPT neurons, on the other hand, show neither a regenerative nor an apoptotic response. They show either a lowered expression or no change in genes for a variety of growth associated proteins, and these neurons survive for at least 2 months post-axotomy. There are several potential explanations for this lack of cellular response for LDPT neurons, one of which is the distance of the LDPT cell body from the T10 lesion. In this study, we examined the molecular response of LDPT neurons to axotomy caused by a proximal spinal cord lesion. Utilizing laser capture microdissection and RNA quantification with branched DNA technology, we analyzed the change in gene expression in LDPT neurons following axotomy near their cell body. Expression patterns of 34 genes selected for their robust responses in TPS neurons were analyzed 3 days following a T2 spinal lesion. Our results show that after axonal injury nearer their cell bodies, there was a differential response of the same set of genes evaluated previously in TPS neurons after proximal axotomy, and LDPT neurons after distal axotomy (T10 spinal transection). The genetic response was much less robust than for TPS neurons after proximal axotomy, included both increased and decreased expression of certain genes, and did not suggest either a major regenerative or apoptotic response within the population of genes examined. The data collectively demonstrate that the location of axotomy in relation to the soma of a neuron has a major effect on its ability to mount a regenerative response. However, the data also suggest that there are endogenous differences in the LDPT and TPS neuronal populations that affect their response to axotomy. These phenotypic differences may indicate that different or multiple therapies may be needed following spinal cord injury to stimulate maximal regeneration of all PS axons.

  • Pretreatment with a CRF antagonist amplifies feeding inhibition induced by fourth ventricular cocaine- and amphetamine-regulated transcript peptide
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-18
    Ulrika Smedh; Karen A. Scott; Timothy H. Moran

    Pre-treatment with the corticotropin-releasing factor antagonist α-helical CRF9-41 prevents inhibition of gastric emptying by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level, but its inhibition of sucrose intake is not affected. This is suggestive of separable underlying mechanisms of action in the caudal brainstem for cocaine-and amphetamine-regulated transcript peptide with regard to food intake and gastrointestinal functions. Here we further examine cocaine-and amphetamine-regulated transcript peptide—corticotropin-releasing factor receptor interactions in caudal brainstem controls of solid food intake. Injections of combinations of vehicle, cocaine-and amphetamine-regulated transcript peptide (0.5 μg or 1 μg) or α-helical CRF9-41 were given into the fourth cerebral ventricle of rats. Nocturnal solid food intake was recorded over 22 h. Pre-treatment with α-helical CRF9-41 into the fourth ventricle significantly increased the responsivity to cocaine-and amphetamine-regulated transcript peptide on hypophagia. In a separate control experiment, α-helical CRF9-41 pre-treatment blocked CRF-induced food intake inhibition indicative of its antagonistic effectiveness. We conclude that an endogenous Corticotropin-releasing factor agonist may modulate suppression of food intake caused by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level in the absence of stress. A potential caudal brainstem mechanism whereby cocaine-and amphetamine-regulated transcript peptide effects on food intake is attenuated via corticotropin-releasing factor receptor activity causing tonic inhibition, is suggested.

  • Non-invasive measurement of hemodynamic change during 8 MHz transcranial focused ultrasound stimulation using near-infrared spectroscopy
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-18
    Evgenii Kim; Eloise Anguluan; Sangyeon Youn; Jihun Kim; Jae Youn Hwang; Jae Gwan Kim

    Transcranial focused ultrasound (tFUS) attracts wide attention in neuroscience as an effective noninvasive approach to modulate brain circuits. In spite of this, the effects of tFUS on the brain is still unclear, and further investigation is needed. The present study proposes to use near-infrared spectroscopy (NIRS) to observe cerebral hemodynamic change caused by tFUS in a noninvasive manner. The results show a transient increase of oxyhemoglobin and decrease of deoxyhemoglobin concentration in the mouse model induced by ultrasound stimulation of the somatosensory cortex with a frequency of 8 MHz but not in sham. In addition, the amplitude of hemodynamics change can be related to the peak intensity of the acoustic wave. High frequency 8 MHz ultrasound was shown to induce hemodynamic changes measured using NIRS through the intact mouse head. The implementation of NIRS offers the possibility of investigating brain response noninvasively for different tFUS parameters through cerebral hemodynamic change.

  • Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer’s disease
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-20
    Yasufumi Sakakibara; Michiko Sekiya; Takashi Saito; Takaomi C. Saido; Koichi M. Iijima

    Knock-in (KI) mouse models of Alzheimer’s disease (AD) that endogenously overproduce Aβ without non-physiological overexpression of amyloid precursor protein (APP) provide important insights into the pathogenic mechanisms of AD. Previously, we reported that AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic) exhibited emotional alterations before the onset of definitive cognitive deficits. To determine whether these mice exhibit deficits in learning and memory at more advanced ages, we compared the Morris water maze performance of AppNL-G-F and AppNL mice, which harbor only the Swedish mutation, with that of wild-type (WT) C57BL/6J mice at the age of 24 months. To correlate cognitive deficits and neuroinflammation, we also examined Aβ plaque formation and reactive gliosis in these mice. In the Morris water maze, a spatial task, 24-month-old AppNL-G-F/NL-G-F mice exhibited significantly poorer spatial learning than WT mice during the hidden training sessions, but similarly to WT mice during the visible training sessions. Not surprisingly, AppNL-G-F/NL-G-F mice also exhibited spatial memory deficits both 1 and 7 days after the last training session. By contrast, 24-month-old AppNL/NL mice had intact spatial learning and memory relative to WT mice. Immunohistochemical analyses revealed that 24-month-old AppNL-G-F/NL-G-F mice developed massive Aβ plaques and reactive gliosis (microgliosis and astrocytosis) throughout the brain, including the cortex and hippocampus. By contrast, we observed no detectable brain pathology in AppNL/NL mice despite overproduction of human Aβ40 and Aβ42 in their brains. Aβ plaque formation, followed by sustained neuroinflammation, is necessary for the induction of definitive cognitive deficits in App-KI mouse models of AD. Our data also indicate that introduction of the Swedish mutation alone in endogenous APP is not sufficient to produce either AD-related brain pathology or cognitive deficits in mice.

  • Additive effect of 5-HT2C and CB1 receptor blockade on the regulation of sleep–wake cycle
    BMC Neurosci. (IF 2.62) Pub Date : 2019-03-20
    Emese Bogáthy; Noémi Papp; Laszló Tóthfalusi; Szilvia Vas; György Bagdy

    Previous data show that serotonin 2C (5-HT2C) and cannabinoid 1 (CB1) receptors have a role in the modulation of sleep–wake cycle. Namely, antagonists on these receptors promoted wakefulness and inhibited rapid eye movement sleep (REMS) in rodents. The interaction of these receptors are also present in other physiological functions, such as the regulation of appetite. Blockade of 5-HT2C receptors modulat the effect of CB1 receptor antagonist, presumably in consecutive or interdependent steps. Here we investigate, whether previous blockade of 5-HT2C receptors can affect CB1 receptor functions in the sleep–wake regulation. Wistar rats were equipped with electroencephalography (EEG) and electromyography (EMG) electrodes. Following the recovery and habituation after surgery, animals were injected intraperitoneally (ip.) with SB-242084, a 5-HT2C receptor antagonist (1.0 mg/kg) at light onset (beginning of passive phase) followed by an injection with AM-251, a CB1 receptor antagonist (5.0 or 10.0 mg/kg, ip.) 10 min later. EEG, EMG and motor activity were analyzed for the subsequent 2 h. Both SB-242084 and AM-251 increased the time spent in active wakefulness, while decreased the time spent in non-REMS and REMS stages in the first 2 h of passive phase. In combination, the effect of the agents were additive, furthermore, statistical analysis did not show any interaction between the effects of these drugs in the modulation of vigilance stages. Our results suggest that 5-HT2C receptor blockade followed by blockade of CB1 receptors evoked additive effect on the regulation of sleep–wake pattern.

  • Assessing the protective effect of rosiglitazone against electronic cigarette/tobacco smoke-induced blood–brain barrier impairment
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-04
    Farzane Sivandzade; Luca Cucullo

    Smoking (TS) and recently e-cigarettes (EC) vaping, have been associated with vascular endothelial dysfunction primarily relevant to oxidative stress, exposure to nicotine, and smoking-induced inflammation. It is accepted that both EC and TS enhance glucose intolerance and the risk of developing type-2 diabetes mellitus which is also one of the causes of blood–brain barrier (BBB) damage and the higher risk of cerebrovascular diseases. Recent studies have shown how Metformin, the first common antidiabetic drug, can protect the BBB integrity through enhancement of nuclear factor erythroid 2-related factor (Nrf2) activity. Herein, we investigated the role of rosiglitazone (RSG; family of thiazolidinedione class used oral anti-diabetic drug) in TS/EC-induced BBB impairment. Although the exact mechanism of RSG is not fully understood, previous studies have revealed that RSG can promote counteractive protective mechanisms primarily associated with the enhancement of Nrf2 activity through activation of the peroxisome proliferator-activated receptor gamma. In line with these findings, our results show an increased expression of PPARy by RSG, enhancement of Nrf2 activity and BBB protection against TS/EC exposure including reduced inflammation, oxidative stress, tight junction downregulation and loss of BBB integrity. RSG could be considered as a promising therapeutic potential to prevent TS/EC induced cerebrovascular dysfunction and possibly other xenobiotic substances which may impact the BBB via oxidative stress-mediated effects. However, additional in vivo studies and clinical setting will be needed to validate our results and assess the full extent of RSG protective effects.

  • Affective and cognitive behavior is not altered by chronic constriction injury in B7-H1 deficient and wildtype mice
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-11
    Franziska Karl; Maria B. Nandini Colaço; Annemarie Schulte; Claudia Sommer; Nurcan Üçeyler

    Chronic neuropathic pain is often associated with anxiety, depressive symptoms, and cognitive impairment with relevant impact on patients` health related quality of life. To investigate the influence of a pro-inflammatory phenotype on affective and cognitive behavior under neuropathic pain conditions, we assessed mice deficient of the B7 homolog 1 (B7-H1), a major inhibitor of inflammatory response. Adult B7-H1 ko mice and wildtype littermates (WT) received a chronic constriction injury (CCI) of the sciatic nerve, and we assessed mechanical and thermal sensitivity at selected time points. Both genotypes developed mechanical (p < 0.001) and heat hypersensitivity (p < 0.01) 7, 14, and 20 days after surgery. We performed three tests for anxiety-like behavior: the light–dark box, the elevated plus maze, and the open field. As supported by the results of these tests for anxiety-like behavior, no relevant differences were found between genotypes after CCI. Depression-like behavior was assessed using the forced swim test. Also, CCI had no effect on depression like behavior. For cognitive behavior, we applied the Morris water maze for spatial learning and memory and the novel object recognition test for object recognition, long-, and short-term memory. Learning and memory did not differ in B7-H1 ko and WT mice after CCI. Our study reveals that the impact of B7-H1 on affective-, depression-like- and learning-behavior, and memory performance might play a subordinate role in mice after nerve lesion.

  • Involvement of brain-derived neurotrophic factor (BDNF) in chronic intermittent stress-induced enhanced mechanical allodynia in a rat model of burn pain
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-24
    Natasha M. Sosanya; Thomas H. Garza; Winfred Stacey; Stephen L. Crimmins; Robert J. Christy; Bopaiah P. Cheppudira

    Reports show that stressful events before injury exacerbates post-injury pain. The mechanism underlying stress-induced heightened thermal pain is unclear. Here, we examined the effects of chronic intermittent stress (CIS) on nociceptive behaviors and brain-derived nerve growth factor (BDNF) system in the prefrontal cortex (PFC) and hypothalamus of rats with and without thermal injury. Unstressed rats showed transient mechanical allodynia during stress exposure. Stressed rats with thermal injury displayed persistent exacerbated mechanical allodynia (P < 0.001). Increased expression of BDNF mRNA in the PFC (P < 0.05), and elevated TrkB and p-TrkB (P < 0.05) protein levels in the hypothalamus were observed in stressed rats with thermal injury but not in stressed or thermally injured rats alone. Furthermore, administration of CTX-B significantly reduced stress-induced exacerbated mechanical allodynia in thermally injured rats (P < 0.001). These results indicate that BDNF-TrkB signaling in PFC and hypothalamus contributes to CIS-induced exacerbated mechanical allodynia in thermal injury state.

  • Subclinical lipopolysaccharide from Salmonella Enteritidis induces neuropeptide dysregulation in the spinal cord and the dorsal root ganglia
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-25
    Anita Mikołajczyk; Dagmara Złotkowska

    Despite increasing evidence that lipopolysaccharide (LPS) affects the biological active substances of dorsal root ganglia (DRG) we have limited knowledge of the influence of a single low dose of LPS, which does not result in any clinical symptoms of disease (subclinical LPS) on neuropeptides connected with the sensory pathway. Accordingly, in this work, we investigated the influence of subclinical LPS from Salmonella Enteritidis on selected neuropeptides: substance P (SP), galanin (GAL), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP) and somatostatin (SOM) in the cervical, thoracic, lumbar and sacral regions of the DRG and spinal cord. This study was performed on immature female pigs of the Pietrain × Duroc breed. Seven days after the intravenous injection of saline solution for control animals (n = 5) and 5 μg/kg b.w. LPS from S. Enteritidis for the experimental group (n = 5), the DRG and the spinal cord were collected to extract the neuropeptides using solid-phase extraction technology. Our results demonstrated that subclinical LPS in DRG was able to change the levels of all studied neuropeptides except SOM, whereas in the spinal cord it down-regulated all studied neuropeptides in the sacral spinal cord, maintaining the concentration of all studied neuropeptides in other regions similar to that observed in the control animals. The significant differences in the intensity and character of observed changes between particular regions of the DRG suggest that the exact functions of the studied neuropeptides and mechanisms of responses to subclinical LPS action depend on specific characteristics and functions of each examination region of DRG. The mechanisms of observed changes are not fully understood and require further study of the molecular interactions between subclinical LPS from S. Enteritidis and neuronal and non-neuronal cells of DRG and spinal cord. The peripheral and central pain pathways must be analysed with the aspect of unknown long-term consequences of the influence of subclinical LPS from S. Enteritidis on neuropeptides in the spinal cord and the dorsal root ganglia.

  • Effect of photobiomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-26
    Yun-Hee Rhee; Jeong Hwan Moon; Jae Yun Jung; Connie Oh; Jin-Chul Ahn; Phil-Sang Chung

    To determine whether photobiomodulation (PBM) rescued the disruption of Na+/Ca2+ homeostasis and mitochondrial membrane potential by ouabain; the Na, K-ATPase inhibitor. For PBM in this study, a 660 nm LED array was used at energy densities of 0.78, 1.56, 3.12, 6.24, and 9.36 J/cm2. HCN-2 neuronal cells treated with ouabain showed loss of cell polarity, disrupted cell morphology, and decreased cell viability, which were improved after PBM treatment. We found that ouabain-induced Na, K-ATPase inhibition promoted activation of downstream signaling through Src, Ras, and mitogen-activated protein kinase (MAPK), which were suppressed after PBM treatment. This provided evidence of Na, K-ATPase α-subunit inactivation and intracellular Ca2+ increase. In response to ouabain, we observed activation of Src and MAPK by Na, K-ATPase, decreased mitochondrial membrane potential, and Na+-dependent Ca2+ increases, which were restored by PBM treatment. This study demonstrated that Na+/K+ imbalance could be regulated by PBM treatment in neuronal cells, and we suggest that PBM is a potential therapeutic tool for Na, K-ATPase targeted neuronal diseases.

  • Electric stimulation of the medial forebrain bundle influences sensorimotor gaiting in humans
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-29
    Patricia Panther; Maria Kuehne; Jürgen Voges; Sven Nullmeier; Jörn Kaufmann; Janet Hausmann; Daniel Bittner; Imke Galazky; Hans-Jochen Heinze; Andreas Kupsch; Tino Zaehle

    Prepulse inhibition (PPI) of the acoustic startle response, a measurement of sensorimotor gaiting, is modulated by monoaminergic, presumably dopaminergic neurotransmission. Disturbances of the dopaminergic system can cause deficient PPI as found in neuropsychiatric diseases. A target specific influence of deep brain stimulation (DBS) on PPI has been shown in animal models of neuropsychiatric disorders. In the present study, three patients with early dementia of Alzheimer type underwent DBS of the median forebrain bundle (MFB) in a compassionate use program to maintain cognitive abilities. This provided us the unique possibility to investigate the effects of different stimulation conditions of DBS of the MFB on PPI in humans. Separate analysis of each patient consistently showed a frequency dependent pattern with a DBS-induced increase of PPI at 60 Hz and unchanged PPI at 20 or 130 Hz, as compared to sham stimulation. Our data demonstrate that electrical stimulation of the MFB modulates PPI in a frequency-dependent manner. PPI measurement could serve as a potential marker for optimization of DBS settings independent of the patient or the examiner.

  • Notch signalling defines dorsal root ganglia neuroglial fate choice during early neural crest cell migration
    BMC Neurosci. (IF 2.62) Pub Date : 2019-04-29
    Sophie Wiszniak; Quenten Schwarz

    The dorsal root ganglia (DRG) are a critical component of the peripheral nervous system, and function to relay somatosensory information from the body’s periphery to sensory perception centres within the brain. The DRG are primarily comprised of two cell types, sensory neurons and glia, both of which are neural crest-derived. Notch signalling is known to play an essential role in defining the neuronal or glial fate of bipotent neural crest progenitors that migrate from the dorsal ridge of the neural tube to the sites of the DRG. However, the involvement of Notch ligands in this process and the timing at which neuronal versus glial fate is acquired has remained uncertain. We have used tissue specific knockout of the E3 ubiquitin ligase mindbomb1 (Mib1) to remove the function of all Notch ligands in neural crest cells. Wnt1-Cre; Mib1fl/fl mice exhibit severe DRG defects, including a reduction in glial cells, and neuronal cell death later in development. By comparing formation of sensory neurons and glia with the expression and activation of Notch signalling in these mice, we define a critical period during embryonic development in which early migrating neural crest cells become biased toward neuronal and glial phenotypes. We demonstrate active Notch signalling between neural crest progenitors as soon as trunk neural crest cells delaminate from the neural tube and during their early migration toward the site of the DRG. This data brings into question the timing of neuroglial fate specification in the DRG and suggest that it may occur much earlier than originally considered.

  • In vitro characterization of odorranalectin for peptide-based drug delivery across the blood–brain barrier
    BMC Neurosci. (IF 2.62) Pub Date : 2019-05-08
    Ravi K. Sajja; Predrag Cudic; Luca Cucullo

    The use of siRNA-based gene silencing has been recently underscored as a potential therapeutic strategy for the treatment of neurological disorders. However, the stability of siRNA and other small molecule therapeutics is challenged by their intrinsic instability and limited passage across the blood–brain barrier (BBB). Based on these premises, our objective was to characterize/optimize odorranalectin (OL), a small non-immunogenic lectin-like peptide, as a carrier for targeted delivery across the BBB. For this purpose, 5(6)-carboxyfluorescein-conjugated OL and scramble peptide were synthesized, and then their BBB cellular internalization/trafficking and stability were characterized versus temperature, pH and serum content in the media in hCMEC/D3 cells as a model of BBB endothelium. Specifically, integrity of the internalized peptide in cell lysates was analyzed by LC/MS while cellular distribution and intracellular trafficking of OL was examined by fluorescence microscopy with early-late endosome (pHRodo Red®) and lysosome (Lysotracker®) markers. Our data show that cellular uptake of OL increased linearly with the concentrations tested in this study at 37 °C and the uptake was two to threefolds higher when compared to scramble peptide. While there were no differences for scramble peptide, the uptake of OL decreased by 50% at 4 °C incubation (vs. 37 °C). No effects of pH were observed on endothelial uptake of OL. Immunofluorescence studies also indicated a significant cellular internalization of OL that remained intact (as evaluated by LC–MS/MS) and co-localized with endosomal, but not lysosome marker. Importantly, OL was found non-toxic to cells at all concentrations tested. In summary, our data suggest the existence of a receptor-mediated transcytosis pathway for cellular uptake of OL at the BBB endothelium. However, in vivo studies will be needed to assess the siRNA loading capacity of OL and its trans-BBB transport efficiency for targeted delivery in the brain.

  • Iron deposition in Parkinson’s disease by quantitative susceptibility mapping
    BMC Neurosci. (IF 2.62) Pub Date : 2019-05-22
    Qiqi Chen; Yiting Chen; Yue Zhang; Furu Wang; Hongchang Yu; Caiyuan Zhang; Zhen Jiang; Weifeng Luo

    Patients with Parkinson’s disease (PD) have elevated levels of brain iron, especially in the nigrostriatal dopaminergic system. The purpose of this study was to evaluate the iron deposition in the substantia nigra (SN) and other deep gray matter nuclei of PD patients using quantitative susceptibility mapping (QSM) and its clinical relationship, and to explore whether there is a gradient of iron deposition pattern in globus pallidus (GP)–fascicula nigrale (FN)–SN pathway. Thirty-three PD patients and 26 age- and sex-matched healthy volunteers (HVs) were included in this study. Subjects underwent brain MRI and constructed QSM data. The differences in iron accumulation in the deep gray matter nuclei of the subjects were compared, including the PD group and the control group, the early-stage PD (EPD) group and the late-stage PD (LPD) group. The iron deposition pattern of the GP–FN–SN pathway was analyzed. The PD group showed increased susceptibility values in the FN, substantia nigra pars compacta (SNc), internal globus pallidus (GPi), red nucleus (RN), putamen and caudate nucleus compared with the HV group (P < 0.05). In both PD and HV group, iron deposition along the GP–FN–SN pathway did not show an increasing gradient pattern. The SNc, substantia nigra pars reticulata (SNr) and RN showed significantly increased susceptibility values in the LPD patients compared with the EPD patients. PD is closely related to iron deposition in the SNc. The condition of PD patients is related to the SNc and the SNr. There is not an increasing iron deposition gradient along the GP–FN–SN pathway. The source and mechanism of iron deposition in the SN need to be further explored, as does the relationship between the iron deposition in the RN and PD.

  • Effects of MUL1 and PARKIN on the circadian clock, brain and behaviour in Drosophila Parkinson’s disease models
    BMC Neurosci. (IF 2.62) Pub Date : 2019-05-28
    Bartosz Doktór; Milena Damulewicz; Elżbieta Pyza

    Mutants which carry mutations in genes encoding mitochondrial ligases MUL1 and PARKIN are convenient Drosophila models of Parkinson’s disease (PD). In several studies it has been shown that in Parkinson’s disease sleep disturbance occurs, which may be the result of a disturbed circadian clock. We found that the ROS level was higher, while the anti-oxidant enzyme SOD1 level was lower in mul1A6 and park1 mutants than in the white mutant used as a control. Moreover, mutations of both ligases affected circadian rhythms and the clock. The expression of clock genes per, tim and clock and the level of PER protein were changed in the mutants. Moreover, expression of ATG5, an autophagy protein also involved in circadian rhythm regulation, was decreased in the brain and in PDF-immunoreactive large ventral lateral clock neurons. The observed changes in the molecular clock resulted in a longer period of locomotor activity rhythm, increased total activity and shorter sleep at night. Finally, the lack of both ligases led to decreased longevity and climbing ability of the flies. All of the changes observed in the brains of these Drosophila models of PD, in which mitochondrial ligases MUL1 and PARKIN do not function, may explain the mechanisms of some neurological and behavioural symptoms of PD.

  • Iron concentrations in neurons and glial cells with estimates on ferritin concentrations
    BMC Neurosci. (IF 2.62) Pub Date : 2019-05-29
    Anja Reinert; Markus Morawski; Johannes Seeger; Thomas Arendt; Tilo Reinert

    Brain iron is an essential as well as a toxic redox active element. Physiological levels are not uniform among the different cell types. Besides the availability of quantitative methods, the knowledge about the brain iron lags behind. Thereby, disclosing the mechanisms of brain iron homeostasis helps to understand pathological iron-accumulations in diseased and aged brains. With our study we want to contribute closing the gap by providing quantitative data on the concentration and distribution of iron in neurons and glial cells in situ. Using a nuclear microprobe and scanning proton induced X-ray emission spectrometry we performed quantitative elemental imaging on rat brain sections to analyze the iron concentrations of neurons and glial cells. Neurons were analyzed in the neocortex, subiculum, substantia nigra and deep cerebellar nuclei revealing an iron level between $$(0.53\pm 2)$$ and $$(0.68\pm 2)\,\upmu \hbox {M}$$ . The iron concentration of neocortical oligodendrocytes is fivefold higher, of microglia threefold higher and of astrocytes twofold higher compared to neurons. We also analyzed the distribution of subcellular iron concentrations in the cytoplasm, nucleus and nucleolus of neurons. The cytoplasm contains on average 73% of the total iron, the nucleolus—although a hot spot for iron—due to its small volume only 6% of total iron. Additionally, the iron level in subcellular fractions were measured revealing that the microsome fraction, which usually contains holo-ferritin, has the highest iron content. We also present an estimate of the cellular ferritin concentration calculating $$133\pm 25$$ ferritin molecules per $$\upmu \hbox {m}$$ in rat neurons. Glial cells are the most iron-rich cells in the brain. Imbalances in iron homeostasis that lead to neurodegeneration may not only be originate from neurons but also from glial cells. It is feasible to estimate the ferritin concentration based on measured iron concentrations and a reasonable assumptions on iron load in the brain.

  • Neuro-genetic plasticity of Caenorhabditis elegans behavioral thermal tolerance
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-10
    Gregory W. Stegeman; Denise Medina; Asher D. Cutter; William S. Ryu

    Animal responses to thermal stimuli involve intricate contributions of genetics, neurobiology and physiology, with temperature variation providing a pervasive environmental factor for natural selection. Thermal behavior thus exemplifies a dynamic trait that requires non-trivial phenotypic summaries to appropriately capture the trait in response to a changing environment. To characterize the deterministic and plastic components of thermal responses, we developed a novel micro-droplet assay of nematode behavior that permits information-dense summaries of dynamic behavioral phenotypes as reaction norms in response to increasing temperature (thermal tolerance curves, TTC). We found that C. elegans TTCs shift predictably with rearing conditions and developmental stage, with significant differences between distinct wildtype genetic backgrounds. Moreover, after screening TTCs for 58 C. elegans genetic mutant strains, we determined that genes affecting thermosensation, including cmk-1 and tax-4, potentially play important roles in the behavioral control of locomotion at high temperature, implicating neural decision-making in TTC shape rather than just generalized physiological limits. However, expression of the transient receptor potential ion channel TRPA-1 in the nervous system is not sufficient to rescue rearing-dependent plasticity in TTCs conferred by normal expression of this gene, indicating instead a role for intestinal signaling involving TRPA-1 in the adaptive plasticity of thermal performance. These results implicate nervous system and non-nervous system contributions to behavior, in addition to basic cellular physiology, as key mediators of evolutionary responses to selection from temperature variation in nature.

  • Live calcium imaging of Aedes aegypti neuronal tissues reveals differential importance of chemosensory systems for life-history-specific foraging strategies
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-17
    Michelle Bui; Jennifer Shyong; Eleanor K. Lutz; Ting Yang; Ming Li; Kenneth Truong; Ryan Arvidson; Anna Buchman; Jeffrey A. Riffell; Omar S. Akbari

    The mosquito Aedes aegypti has a wide variety of sensory pathways that have supported its success as a species as well as a highly competent vector of numerous debilitating infectious pathogens. Investigations into mosquito sensory systems and their effects on behavior are valuable resources for the advancement of mosquito control strategies. Numerous studies have elucidated key aspects of mosquito sensory systems, however there remains critical gaps within the field. In particular, compared to that of the adult form, there has been a lack of studies directed towards the immature life stages. Additionally, although numerous studies have pinpointed specific sensory receptors as well as responding motor outputs, there has been a lack of studies able to monitor both concurrently. To begin filling aforementioned gaps, here we engineered Ae. aegypti to ubiquitously express a genetically encoded calcium indicator, GCaMP6s. Using this strain, combined with advanced microscopy, we simultaneously measured live stimulus-evoked calcium responses in both neuronal and muscle cells with a wide spatial range and resolution. By coupling in vivo live calcium imaging with behavioral assays we were able to gain functional insights into how stimulus-evoked neural and muscle activities are represented, modulated, and transformed in mosquito larvae enabling us to elucidate mosquito sensorimotor properties important for life-history-specific foraging strategies.

  • The involvement of spinal annexin A10/NF-κB/MMP-9 pathway in the development of neuropathic pain in rats
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-17
    LiHong Sun; Qi Xu; WenXin Zhang; CuiCui Jiao; Hui Wu; XinZhong Chen

    Neuropathic pain (NP) is a prevalent disease, which badly impairs the life quality of patients. The underlying mechanism of NP is still not fully understood. It has been reported that spinal Annexin A10 (ANXA10) contributes to NP. This study aims at exploring the underlying mechanisms of spinal ANXA10 in regulating NP in rats. Spinal nerve ligation (SNL) was adopted to establish a NP model in rats. After SNL, paw withdrawal threshold and paw withdrawal latency were recorded to measure pain behaviors, RT-PCR was used to check the change of the expression of spinal ANXA10 mRNA, western blot analysis was used to detect the change of the protein level of ANXA10, nuclear factor kappa B (NF-κB), and maisrix metalloproteinase-9 (MMP-9) in the spinal cord. The levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6), were explored by ELISA kits. The effects of both knockdown of spinal ANXA10 and inhibition of NF-κB on pain behaviors and the expression of MMP-9 and proinflammatory cytokines were investigated. Our present findings highlighted that SNL caused pain hypersensitivity and increased the expression of spinal ANXA10/pNF-κB, TNF-α, IL-1β, and IL-6 both in the early and late phase of NP in rats, while spinal MMP-9 was only slightly increased in the early phase of NP. Knockdown of ANXA10 at the spinal cord level suppressed the SNL-induced hyperalgesia and blocked the activation of NF-κB, TNF-α and IL-1β both in the early and late phase of NP. Spinal ANXA10 knockdown could prevent the upregulation of spinal MMP-9 in the early phase and inhibit IL-6 expression in the late phase of SNL-induced NP. In conclusion, spinal ANXA10/NF-κB/MMP-9 pathway, along with the activation of proinflammatory cytokines, was involved in the SNL-induced NP. MMP-9 may act as the downstream target of ANXA10/NF-κB pathway in the development rather than the maintenance of NP.

  • Evaluation of IL-1β levels in epilepsy and traumatic brain injury in dogs
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-17
    Draginja Kostic; Regina Carlson; Diana Henke; Karl Rohn; Andrea Tipold

    Epilepsy is a common neurological disease in dogs affecting approximately 0.6–0.75% of the canine population. There is much evidence of neuroinflammation presence in epilepsy, creating new possibilities for the treatment of the disease. An increased expression of interleukin-1 beta (IL-1β) was reported in epileptogenic foci. We hypothesized that there is an elevation of IL-1β in serum and CSF of dogs with epilepsy, as well as in serum of dogs with TBI, reflecting involvement of this cytokine in pathophysiology of naturally occurring canine epilepsy in a clinical setting. IL-1β levels were evaluated in CSF and serum of six healthy and 51 dogs with epilepsy (structural and idiopathic). In 16 dogs with TBI, only serum was tested. IL-1β concentrations in CSF were not detectable. Serum values were not elevated in dogs with TBI in comparison to healthy controls (p > 0.05). However, dogs with epilepsy had increased levels of IL-1β in serum (p = 0.003) regardless of the underlying cause of the disease (p = 0.0045). There was no significant relationship between the variables and IL-1β levels. Statistically noticeable (p = 0.0630) was that approximately 10% of dog with epilepsy (R2 = 0.105) had increased seizure frequency and IL-1β elevation. Increased IL-1β levels were detected in the peripheral blood in dogs with idiopathic and structural epilepsy leading to the assumption that there is an involvement of inflammation in pathophysiology of epilepsy which should be considered in the search for new therapeutic strategies for this disease. However, to better understand the pathogenic role of this cytokine in epilepsy, further evaluation of IL-1β in brain tissue is desired.

  • Abnormal resting-state cerebral-limbic functional connectivity in bipolar depression and unipolar depression
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-17
    Chang Liu; Weidan Pu; Guowei Wu; Jie Zhao; Zhimin Xue

    Distinctive patterns of functional connectivity (FC) abnormalities in neural circuitry has been reported in patients with bipolar depression (BD) and unipolar depression (UD). However, it is unclear that whether this distinct functional connectivity patterns are diagnosis specific between BD and UD. This study aimed to compare patterns of functional connectivity among BD, UD and healthy controls (HC) and determine the distinct functional connectivity patterns which can differentiate BD from UD. Totally 23 BD, 22 UD, and 24 HC were recruited to undergo resting-state fMRI scanning. FC between each pair of brain regions was calculated and compared among the three groups, the associations of FC with depressive symptom were also analyzed. Both patient groups showed significantly decreased cerebral-limbic FC located between the default mode network [posterior cingulated gyrus (PCG) and precuneus] and limbic regions (hippocampus, amygdala and thalamus) than HC. Moreover, the BD group exhibited more decreased FC mainly in the cortical regions (middle temporal gyrus, PCG, medial superior frontal gyrus, inferior occipital gyrus and superior temporal gyrus), but the UD group is more associated with limbic alterations. These decreased FCs were negatively correlated with HAMD scores in both BD and UD patients. BD and UD patients demonstrate different patterns of abnormal cerebral-limbic FC, reflected by decreased FC within cerebral cortex and limbic regions in BD and UD, respectively. The distinct FC abnormal pattern of the cerebral-limbic circuit might be applied as biomarkers to differentiate these two depressive patient groups.

  • Gastrodin protects dopaminergic neurons via insulin-like pathway in a Parkinson’s disease model
    BMC Neurosci. (IF 2.62) Pub Date : 2019-06-17
    Jinyuan Yan; Zhongshan Yang; Ninghui Zhao; Zhiwei Li; Xia Cao

    Recently, the use of traditional Chinese medicine (TCM) has become more generally accepted, including by the Food and Drug Administration. To expand the use of TCM worldwide, it is important to study the molecular mechanisms by which TCM and its active ingredients produce effects. Gastrodin is an active ingredient from Gastrodia elata Blume. It is reported that gastrodin has neuroprotective function in Parkinson’s disease. But its mechanisms of neuroprotection remain not clear in PD. Here, we build two C. elegans PD model using 6-OHDA and transgenic animal to observe the changes of PD worms treated with or without gastrodin to confirm the function of gastrodin, then utilize mutant worms to investigate DAF-2/DAF-16 signaling pathway, and finally verify the mechanism of gastrodin in PD. Gastrodin attenuates the accumulation of α-synuclein and the injury of dopaminergic neurons, improves chemotaxis behavior in Parkinson’s disease models, then recovers chemotaxis behavior by insulin-like pathway. DAF-2/DAF-16 is required for neuroprotective effect of dopamine neuron in PD. Our study demonstrated that gastrodin rescued dopaminergic neurons and reduced accumulation of α-synuclein protein, and the activity of gastrodin against Parkinson’s disease depended on the insulin-like DAF-2/DAF-16 signaling pathway. Our findings revealed that this insulin-like pathway mediates neuroprotection of gastrodin in a Parkinson’s disease model.

  • An enhanced staining method K-B-2R staining for three-dimensional nerve reconstruction
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-08
    Peng Luo; Jianghui Dong; Jian Qi; Yi Zhang; Xiaolin Liu; Yingchun Zhong; Cory J. Xian; Liping Wang

    Three-dimensional (3D) reconstruction of human peripheral nerves, as a useful tool to understand the nerve internal information and functional basis, has become an important area of research in the peripheral nerve field. In this study, we proposed a two-dimensional (2D) Karnovsky–Roots toluidine blue ponceau 2R (K-B-2R) staining method based upon conventional Karnovsky–Roots staining. It significantly improved the ability to display nerve fascicles, motor and sensory nerve fiber textures. In this method, Karnovsky–Roots staining was carried out, followed by toluidine blue counterstain and ponceau 2R counterstain. Comparisons were conducted between the three methods in staining of median nerve sections, which showed similar distribution characters in acetylcholinesterase-positive sites. The additional counterstaining did not change the basis of Karnovsky–Roots staining. However, the resulting images from this new method significantly facilitated the subsequent 3D nerve reconstruction and 3D printing. These results show that the new staining method significantly enhanced the display qualities of nerve fascicle edges and fiber textures of motor and sensory nerves and facilitated 3D nerve reconstruction.

  • Chronic exposure to high fat diet triggers myelin disruption and interleukin-33 upregulation in hypothalamus
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-10
    Hui-Ting Huang; Sheng-Feng Tsai; Hung-Tsung Wu; Hsin-Ying Huang; Han-Hsueh Hsieh; Yu-Ming Kuo; Po-See Chen; Chung-Shi Yang; Shun-Fen Tzeng

    Hypothalamic inflammation including astrogliosis and microglia activation occurs after intake of high fat diet (HFD) in rodent models or in obese individuals. However, the effect of chronic HFD feeding on oligodendrocytes (OLGs), a myelin-producing glial population in the central nervous system (CNS), remains unclear. In this study, we used 8-week old male C57BL/6 mice fed by HFD for 3–6 months to induce chronic obesity. The transmission electron microscopy imaging analysis showed that the integrity of hypothalamic myelin was disrupted after HFD feeding for 4 and 6 months. Moreover, the accumulation of Iba1+-microglia with an amoeboid hypertrophic form was continually observed in arcuate nucleus of HFD-fed mice during the entire feeding time period. Interleukin-33 (IL-33), a tissue alarmin upon injury to the CNS, was detected with an increased level in hypothalamus after HFD feeding for 3 and 4 months. Furthermore, the in vitro study indicated that exposure of mature OLGs to IL-33 impaired OLG cell structure along with a decline in the expression of myelin basic protein. Altogether, our findings demonstrate that chronic HFD feeding triggers hypothalamic myelin disruption in accompany with IL-33 upregulation and prolonged microglial activation in hypothalamus. Given that the addition of exogenous IL-33 was harmful for the maturation of OLGs, an increase in IL-33 by chronic HFD feeding might contribute to the induction of hypothalamic myelin disruption.

  • Impact of inflammation on brain subcellular energetics in anesthetized rats
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-15
    Robert H. Thiele; Hari P. Osuru; Umadevi Paila; Keita Ikeda; Zhiyi Zuo

    Emerging data suggests that volatile anesthetic agents may have organ protection properties in the setting of critical illness. The purpose of this study was to better understand the effect of inflammation on cerebral subcellular energetics in animals exposed to two different anesthetic agents—a GABA agonist (propofol) and a volatile agent (isoflurane). Forty-eight Sprague–Dawley rats were anesthetized with isoflurane or propofol. In each group, rats were randomized to celiotomy and closure (sham) or cecal ligation and puncture (inflammation [sepsis model]) for 8 h. Brain tissue oxygen saturation and the oxidation state of cytochrome aa3 were measured. Brain tissue was extracted using the freeze-blow technique. All rats experienced progressive increases in tissue oxygenation and cytochrome aa3 reduction over time. Inflammation had no impact on cytochrome aa3, but isoflurane caused significant cytochrome aa3 reduction. During isoflurane (not propofol) anesthesia, inflammation led to an increase in lactate (+ 0.64 vs. − 0.80 mEq/L, p = 0.0061). There were no differences in ADP:ATP ratios between groups. In the isoflurane (not propofol) group, inflammation increased the expression of hypoxia-inducible factor-1α (62%, p = 0.0012), heme oxygenase-1 (67%, p = 0.0011), and inducible nitric oxide synthase (31%, p = 0.023) in the brain. Animals exposed to inflammation and isoflurane (but not propofol) exhibited increased expression of protein carbonyls (9.2 vs. 7.0 nM/mg protein, p = 0.0050) and S-nitrosylation (49%, p = 0.045) in the brain. RNA sequencing identified an increase in heat shock protein 90 and NF-κβ inhibitor mRNA in the inflammation/isoflurane group. In the setting of inflammation, rats exposed to isoflurane show increased hypoxia-inducible factor-1α expression despite a lack of hypoxia, increased oxidative stress in the brain, and increased serum lactate, all of which suggest a relative increase in anaerobic metabolism compared to propofol. Differences in oxidative stress as well as heat shock protein 90 and NF-κβ inhibitor may account for the differential expression of cerebral hypoxia-inducible factor-1α during inflammation.

  • Short-term dynamics of input and output of CA1 network greatly differ between the dorsal and ventral rat hippocampus
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-22
    Andriana Koutsoumpa; Costas Papatheodoropoulos

    The functional heterogeneity of the hippocampus along its longitudinal axis at the level of behavior is an established concept; however, the neurobiological mechanisms are still unknown. Diversifications in the functioning of intrinsic hippocampal circuitry including short-term dynamics of synaptic inputs and neuronal output, that are important determinants of information processing in the brain, may profoundly contribute to functional specializations along the hippocampus. The objectives of the present study were the examination of the role of the GABAA receptor-mediated inhibition, the μ-opioid receptors and the effect of stimulation intensity on the dynamics of both synaptic input and neuronal output of CA1 region in the dorsal and ventral hippocampus. We used recordings of field potentials from adult rat hippocampal slices evoked by brief repetitive activation of Schaffer collaterals. We find that the local CA1 circuit of the dorsal hippocampus presents a remarkably increased dynamic range of frequency-dependent short-term changes in both input and output, ranging from strong facilitation to intense depression at low and high stimulation frequencies respectively. Furthermore, the input–output relationship in the dorsal CA1 circuit is profoundly influenced by frequency and time of presynaptic activation. Strikingly, the ventral hippocampus responds mostly with depression, displaying a rather monotonous input–output relationship over frequency and time. Partial blockade of GABAA receptor-mediated transmission (by 5 μM picrotoxin) profoundly influences input and output dynamics in the dorsal hippocampus but affected only the neuronal output in the ventral hippocampus. M-opioid receptors control short-term dynamics of input and output in the dorsal hippocampus but they play no role in the ventral hippocampus. The results demonstrate that information processing by CA1 local network is highly diversified between the dorsal and ventral hippocampus. Transient detection of incoming patterns of activity and frequency-dependent sustained signaling of amplified neuronal information may be assigned to the ventral and dorsal hippocampal circuitry respectively. This disparity should have profound implications for the functional roles ascribed to distinct segments along the long axis of the hippocampus.

  • Post-surgical inhibition of phosphatidylinositol 3-kinase attenuates the plantar incision-induced postoperative pain behavior via spinal Akt activation in male mice
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-31
    Bing Xu; Cheng Mo; Chengmei Lv; Susu Liu; Jun Li; Jieying Chen; Yanhong Wei; Hongwei An; Li Ma; Xuehai Guan

    Postoperative pain (POP) is a severe acute pain encountered in patients suffering from an operation, and is less than adequately controlled by the currently available analgesics. Phosphatidylinositol 3-kinase (PI3K) has been reported to have an important role in neuropathic and inflammatory pain. Our previous research revealed that pre-surgical inhibition of spinal PI3K alleviated the pain behavior induced by plantar incision in mice. The aim of this study was to clarify whether post-surgical inhibition of PI3K would attenuate the POP and the underlying mechanisms. A POP model was established by plantar incision in Kunming mice. A behavioral test was performed to determine mechanical allodynia, thermal hyperalgesia, and cumulative pain scores. The spinal Fos was detected by immunohistochemistry. The spinal expression of protein kinase B (Akt) or phosphorylated Akt (pAkt) was explored using western blot. The cellular location of pAkt was determined by immunofluorescence. Post-surgical inhibition of PI3K attenuated mechanical allodynia, thermal hyperalgesia, and cumulative pain scores induced by plantar incision significantly in male mice, and mildly in female mice. Post-surgical inhibition of PI3K attenuated the expression of spinal Fos in male mice. Plantar incision induced a time-dependent expression of spinal pAkt in male mice, which was primarily expressed in the spinal dorsal horn, and localized with the neuron and microglia’s marker. Post-surgical inhibition of PI3K attenuated the activation of Akt induced by plantar incision in male mice as well. We concluded that post-surgical inhibition of PI3K could attenuate the pain-related behaviors induced by plantar incision, by suppressing the activation of spinal Akt in male mice. This finding might be used in clinical studies to reach a better understanding of POP mechanisms and optimal treatment.

  • Cardiovascular risk and encoding-related hippocampal connectivity in older adults
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-31
    Liesel-Ann C. Meusel; Carol E. Greenwood; Andrea Maione; Ekaterina Tchistiakova; Bradley J. MacIntosh; Nicole D. Anderson

    Cardiovascular conditions contribute to brain volume loss, reduced cerebrovascular health, and increased dementia risk in aging adults. Altered hippocampal connectivity has also been observed in individuals with cardiovascular conditions, yet the functional consequences of these changes remain unclear. In the present study, we collected functional magnetic resonance imaging data during memory encoding and used a psychophysiological interaction analysis to examine whether cardiovascular burden, indexed using the Framingham risk score, was associated with encoding-related hippocampal connectivity and task performance in cognitively-intact older adults between 65 and 85 years of age. Our goal was to better understand the early functional consequences of vascular and metabolic dysfunction in those at risk for cognitive decline. High Framingham risk scores were associated with lower total brain volumes. In addition, those with high Framingham risk scores showed an altered relationship between left hippocampal-medial prefrontal coupling and task performance compared to those with low Framingham risk scores. Specifically, we found a significant interaction of Framingham risk and learning on connectivity between the left hippocampus and primarily left midline prefrontal regions comprising the left ventral anterior cingulate cortex and medial prefrontal cortex. Those with lower Framingham risk scores showed a pattern of weaker connectivity between left hippocampal and medial prefrontal regions associated with better task performance. Those with higher Framingham risk scores showed the opposite pattern; stronger connectivity was associated with better performance. Findings from the current study show that amongst older adults with cardiovascular conditions, higher Framingham risk is associated with lower brain volume and altered left hippocampal-medial prefrontal coupling during task performance compared to those with lower Framingham risk scores. This may reflect a compensatory mechanism in support of memory function and suggests that older adults with elevated cardiovascular risk are vulnerable to early Alzheimer disease-like dysfunction within the episodic memory system.

  • Exploration of time–frequency reassignment and homologous inter-hemispheric asymmetry analysis of MCI–AD brain activity
    BMC Neurosci. (IF 2.62) Pub Date : 2019-07-31
    T. Nimmy John; Puthankattil Subha Dharmapalan; N. Ramshekhar Menon

    In this study, nonlinear based time–frequency (TF) and time domain investigations are employed for the analysis of electroencephalogram (EEG) signals of mild cognitive impairment–Alzheimer’s disease (MCI–AD) patients and healthy controls. This study attempts to comprehend the cognitive decline of MCI–AD under both resting and cognitive task conditions. Wavelet-based synchrosqueezing transform (SST) alleviates the smearing of energy observed in the spectrogram around the central frequencies in short-time Fourier transform (STFT), and continuous wavelet transform (CWT). A precise TF representation is assured due to the reassignment of scale variable to the frequency variable. It is discerned from the studies of time domain measures encompassing fractal dimension (FD) and approximate entropy (ApEn), that the parietal lobe is the most affected in MCI–AD under both resting and cognitive states. Alterations in asymmetry in the brain hemispheres are analysed using the homologous areas inter-hemispheric symmetry (HArS). Time and time–frequency domain analysis of EEG signals have been used for distinguishing various brain states. Therefore, EEG analysis is highly useful for the screening of AD in its prodromal phase.

  • Morphologic changes in the visual cortex of patients with anisometropic amblyopia: a surface-based morphometry study
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-02
    Minglong Liang; He Xiao; Bing Xie; Xuntao Yin; Jian Wang; Hong Yang

    Amblyopia is generally considered a neurodevelopmental disorder that results from abnormal visual experiences in early childhood and may persist to adulthood. The neural basis of amblyopia has been a matter of interest for many decades, but the critical neural processing sites in amblyopia are not entirely understood. Although many functional neuroimaging studies have found abnormal neuronal responses both within and beyond V1, few studies have focused on the neurophysiologic abnormalities in the visual cortex from the viewpoint of potential structural reorganization. In this study, we used a well-validated and highly accurate surface-based method to examine cortical morphologic changes in the visual cortex using multiple parameters (including cortical thickness, surface area, volume and mean curvature). The cortical thicknesses of the bilateral V1, left V2, left ventral V3, left V4 and left V5/MT+ in patients were significantly thinner than that in controls. The mean curvature of the bilateral V1 was significantly increased in the patients compared with the controls. For the surface area and gray matter volume, no significant differences were found between patients and controls in all region of interests. The cortical thicknesses of the bilateral V1 were both negatively correlated with the amount of anisometropia. No significant correlations were found between any other surface parameters and clinical variables. In addition to cortical thickness, the altered mean curvature of the cortex may indicate neuroanatomic impairments of the visual cortex in patients with anisometropic amblyopia. Moreover, the structural changes were bilateral in the primary visual cortex but were unilateral in the secondary and more senior visual cortex.

  • A safety study of 500 μA cathodal transcranial direct current stimulation in rat
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-06
    Keying Zhang; Ling Guo; Junping Zhang; Guangzhou An; Yan Zhou; Jiajin Lin; Junling Xing; Mai Lu; Guirong Ding

    Transcranial direct current stimulation (tDCS) is a noninvasive neural control technology that has become a research hotspot. To facilitate further research of tDCS, the biosafety of 500 μA cathodal tDCS, a controversial parameter in rats was evaluated. 24 animals were randomly divided into two groups: a cathodal tDCS group (tDCS, n = 12) and control group (control, n = 12). Animals in the tDCS group received 5 consecutive days of cathodal tDCS (500 μA, 15 min, once per day) followed by a tDCS-free interval of 2 days and 5 additional days of stimulation, totally two treatments of tDCS for a total of 10 days. Computational 3D rat model was adopted to calculate the current density distributions in brain during tDCS treatment. Essential brain functions including motor function and learning and memory ability were evaluated. Additionally, to estimate the neurotoxicity of tDCS, the brain morphology, neurotransmitter levels and cerebral temperature were investigated. Our results showed that the current density inside the brain was less than 20 A/m2 during tDCS treatment in computational model. tDCS did not affect motor functions and learning and memory ability after tDCS treatment. In addition, no significant differences were found for the tDCS group in hematology, serum biochemical markers or the morphology of major organs. Moreover, tDCS treatment had no effect on the brain morphology, neural structures, neurotransmitter levels or cerebral temperature. 500 μA cathodal tDCS as performed in the present study was safe for rodents.

  • Isoliquiritigenin attenuates lipopolysaccharide-induced cognitive impairment through antioxidant and anti-inflammatory activity
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-06
    Xiaobo Zhu; Jiankun Liu; Shaojie Chen; Jiang Xue; Shanying Huang; Yibiao Wang; Ou Chen

    Oxidative stress and neuroinflammation are central pathogenic mechanisms common to many neurological diseases. Isoliquiritigenin (ISL) is a flavonoid in licorice with multiple pharmacological properties, including anti-inflammatory activity, and has demonstrated protective efficacy against acute neural injury. However, potential actions against cognitive impairments have not been examined extensively. We established a rat model of cognitive impairment by intracerebroventricular injection of lipopolysaccharide (LPS), and examined the effects of ISL pretreatment on cognitive function, hippocampal injury, and hippocampal expression of various synaptic proteins, antioxidant enzymes, pro-inflammatory cytokines, and signaling factors controlling anti-oxidant and pro-inflammatory responses. Rats receiving LPS alone demonstrated spatial learning deficits in the Morris water maze test as evidenced by longer average escape latency, fewer platform crossings, and shorter average time in the target quadrant than untreated controls. ISL pretreatment reversed these deficits as well as LPS-induced decreases in the hippocampal expression levels of synaptophysin, postsynaptic density-95, brain-derived neurotrophic factor, superoxide dismutase, glutathione peroxidase, and BCL-2. ISL pretreatment also reversed LPS-induced increases in TUNEL-positive (apoptotic) cells, BAX/BCL-2 ratio, and expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and C-C motif chemokine ligand 3. Pretreatment with ISL increased the expression levels of phosphorylated (p)-GSK-3β, nuclear NRF2, HO-1 mRNA, and NQO1 mRNA, and reversed LPS-induced nuclear translocation of nuclear factor (NF)-κB. ISL protects against LPS-induced cognitive impairment and neuronal injury by promoting or maintaining antioxidant capacity and suppressing neuroinflammation, likely through phosphorylation-dependent inactivation of GSK-3β, enhanced expression of NRF2-responsive antioxidant genes, and suppression of NF-κB-responsive pro-inflammatory genes.

  • Comparative study of striatum GABA concentrations and magnetic resonance spectroscopic imaging in Parkinson's disease monkeys
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-08
    Lixuan Huang; Yande Ren; Zisan Zeng; Hao Ren; Shaojun Li; Shengnan He; Fan He; Xiangrong Li

    Parkinson's disease is a progressive degenerative nervous system disease. Recent studies have shown that secondary changes in the GABA system play directly affect the pathogenesis of PD. There is still much debate about GABA concentrations because currently, GABA concentrations in the brain tissue are obtained indirectly by measuring its concentration in the blood and cerebrospinal fluid. These results are unreliable. Magnetic resonance spectroscopy (MRS) is the only noninvasive method for evaluating the concentration of metabolites in living brain tissue and has been widely applied in research and clinical practice. In addition, combining MEGA-PRESS technology with LCModel software for quantitative GABA measurements is largely recognized. At present, the PD monkeys model in primates has been increasingly proficient. Primates are more similar to humans in terms of brain structure and function than other animals. However, 3.0 T MRS studies involving the PD monkey model to measure metabolites in living subjects with PD are still rare. The study was performed at 3.0 T MRI with control monkeys and PD monkeys that were injected methyl-phenyl-tetrahydropyridine (MPTP) in one side of common carotid artery before and 3 months after successful model establishment to measure GABA concentrations in the bilateral striatum. Behavioral observations were performed for all animals, and the behavioral score was recorded. After 3 months, the GABA concentration in the bilateral striatum was measured in both groups by high-performance liquid chromatography (HPLC). The data obtained from magnetic resonance spectroscopy (MRS) were compared with the actual measured GABA concentrations in tissues isolated from the corresponding regions, and their correlations with the behavior score were analyzed. The research objectives are to investigate the changes of γ-aminobutyric acid (GABA) concentration in the bilateral striatum of monkeys with Parkinson's disease (PD) and the value of quantitatively measuring its concentration by noninvasive 3.0 T spectroscopy. (1) The MRS results showed that the GABA concentration in the injured side of the striatum of the PD monkeys was higher than in the contralateral side, but the difference was not statistically significant (P = 0.154). Compared with that the blank control group, the GABA concentration in the striatum of the PD monkeys increased, but there was no difference between the groups (P = 0.381; P = 0.425). (2) The GABA concentration that determined from the isolated specimens by HPLC in the injured side of the striatum of the PD monkeys was significantly higher than that in the contralateral side (P < 0.01). Compared with the blank control group, the PD monkeys had higher GABA concentrations in both sides of the striatum, and there was a significant difference in the lesion side (P = 0.004), while there was a non-significant difference in the contralateral side (P = 0.475). (3) The mean GABA concentration in the injured striatum of PD monkeys determined by MRS was not significantly correlated with the behavioral score (r = 0.146, P = 0.688). The mean GABA concentration in the injured striatum determined from the isolated specimens was positively correlated with the behavioral score in the same period (r = 0.444, P = 0.038). The GABA concentration in the injured striatum of PD monkeys is increased and positively correlated with behavioral changes. Validity of noninvasive 3.0 T MRS to detect PD neurotransmitter changes is limited.

  • Brain arousal regulation and depressive symptomatology in adults with attention-deficit/hyperactivity disorder (ADHD)
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-20
    Jue Huang; Christine Ulke; Maria Strauss

    The aim of the present study was to evaluate the stability of brain arousal in adult attention-deficit/hyperactivity disorder (ADHD) outpatients with and without depressive symptomatology, and its association with depressive symptom severity and absolute electroencephalogram (EEG) power in different frequency bands. We included 31 outpatient adults (45.16% females), who were diagnosed according to DSM-IV and received no medication. Their arousal stability score (index of the steepness of arousal decline during a 15-min EEG under resting conditions), the absolute EEG power and self-reports, including depressive and ADHD-related symptoms, were analyzed. Participants were split into an unstable and stable arousal group based on the median (= 6) of the arousal stability score. ADHD patients in the stable group reported more severe depressive symptoms (p = 0.018) and showed reduced absolute EEG power in the delta (0.002 ≤ p ≤ 0.025) and theta (0.011 ≤ p ≤ 0.034) bands compared to those in the unstable group. There was no correlation between the arousal stability score and self-report-scales concerning ADHD-related symptoms (0.214 ≤ p ≤ 0.989), but a positive association with self-reported depressive severity (p = 0.018) and negative association with powers in the EEG delta and theta bands (0.001 ≤ p ≤ 0.033). In view of high comorbidity of depression and ADHD in adult patients, these findings support the assumption that brain arousal regulation could be considered as a helpful marker for the clinical differentiation between ADHD and depression.

  • Behavior, protein, and dendritic changes after model traumatic brain injury and treatment with nanocoffee particles
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-22
    Whitney A. Ratliff; Jessica N. Saykally; Ronald F. Mervis; Xiaoyang Lin; Chuanhai Cao; Bruce A. Citron

    Traumatic brain injury (TBI) is a widespread public health problem and a signature injury of our military in modern conflicts. Despite the long-term effects of even mild brain injuries, an effective treatment remains elusive. Coffee and several of its compounds, including caffeine, have been identified as having neuroprotective effects in studies of neurodegenerative disease. Given the molecular similarities between TBI and neurodegenerative disease, we have devised a study to test a nanocoffee extract in the treatment of a mouse model of mild TBI. After a single injury and two subsequent injections of nanocoffee, we identified treatment as being associated with improved behavioral outcomes, favorable molecular signaling changes, and dendritic changes suggestive of improved neuronal health. We have identified coffee extracts as a potential viable multifaceted treatment approach to target the secondary injury associated with TBI.

  • TNF-α antagonist attenuates systemic lipopolysaccharide-induced brain white matter injury in neonatal rats
    BMC Neurosci. (IF 2.62) Pub Date : 2019-08-30
    Seung Han Shin; Ee-Kyung Kim; Kyung-yup Lee; Han-Suk Kim

    Systemic inflammation is an important risk factor for neurodevelopmental impairments in preterm infants. Premyelinating oligodendrocytes are main building blocks of white matter in preterm infants and vulnerable to oxidative stress and excitotoxic stress. Tumour necrosis factor-α (TNF-α) plays important roles in systemic inflammation and local inflammation leading to apoptosis of premyelinating oligodendrocytes and white matter injury (WMI) in brain tissue. This study was conducted to investigate whether etanercept, a TNF-α antagonist, could attenuate systemic lipopolysaccharide (LPS)-induced WMI in the immature brain. We found that intraperitoneal LPS administration caused systemic and local inflammation in brain tissue. Subsequent etanercept treatment significantly attenuated LPS-induced inflammation in brain tissue as well as in systemic circulation. Intraperitoneal LPS also induced microgliosis and astrocytosis in the cingulum and etanercept treatment reduced LPS-induced microgliosis and astrocytosis. Additionally, systemic LPS-induced apoptosis of oligodendrocyte precursor cells was observed, which was lessened by etanercept treatment. The concentration of etanercept in the CSF was higher when it was administrated with LPS than when administrated with a vehicle. It appears that etanercept reduce WMI in the neonatal rat brain via attenuation of systemic and local inflammation. This study provides preclinical data suggesting etanercept-mediated modulation of inflammation as a promising approach to reduce WMI caused by sepsis or necrotizing enterocolitis in preterm infants.

  • Spatio-temporal characterization of S- and M/L-cone degeneration in the Rd1 mouse model of retinitis pigmentosa
    BMC Neurosci. (IF 2.62) Pub Date : 2019-09-03
    Daniel S. Narayan; Jack Ao; John P. M. Wood; Robert J. Casson; Glyn Chidlow

    The Pde6brd1 (Rd1) mouse is widely used as a murine model for human retinitis pigmentosa. Understanding the spatio-temporal patterns of cone degeneration is important for evaluating potential treatments. In the present study we performed a systematic characterization of the spatio-temporal patterns of S- and M/L-opsin+ cone outer segment and cell body degeneration in Rd1 mice, described the distribution and proportion of dual cones in Rd1 retinas, and examined the kinetics of microglial activation during the period of cone degeneration. Outer segments of S- and M/L-cones degenerated far more rapidly than their somas. Loss of both S- and M/L-opsin+ outer segments was fundamentally complete by P21 in the central retina, and 90% complete by P45 in the peripheral retina. In comparison, degeneration of S- and M/L-opsin+ cell bodies proceeded at a slower rate. There was a marked hemispheric asymmetry in the rate of S-opsin+ and M/L-opsin+ cell body degeneration. M/L-opsin+ cones were more resilient to degeneration in the superior retina, whilst S-opsin+ cones were relatively preserved in the inferior retina. In addition, cone outer segment and cell body degeneration occurred far more rapidly in the central than the peripheral retina. At P14, the superior retina comprised a minority of genuine S-cones with a much greater complement of genuine M/L-opsin cones and dual cones, whilst the other three retinal quadrants had broadly similar numbers of genuine S-cones, genuine M/L-cones and dual cones. At P60, approximately 50% of surviving cones in the superior, nasal and temporal quadrants were dual cones. In contrast, the inferior peripheral retina at P60 contained almost exclusively genuine S-cones with a tiny minority of dual cones. Microglial number and activity were stimulated during rod breakdown, remained relatively high during cone outer segment degeneration and loss of cone somas in the central retina, and decreased thereafter in the period coincident with slow degeneration of cone cell bodies in the peripheral retina. The results of the present study provide valuable insights into cone degeneration in the Rd1 mouse, substantiating and extending conclusions drawn from earlier studies.

  • Altered excitability of small cutaneous nerve fibers during cooling assessed with the perception threshold tracking technique
    BMC Neurosci. (IF 2.62) Pub Date : 2019-09-03
    Rosa Hugosdottir; Carsten Dahl Mørch; Cecilia Klitgaard Jørgensen; Camilla Winther Nielsen; Mathias Vassard Olsen; Mads Jozwiak Pedersen; Jenny Tigerholm

    There is a need for new approaches to increase the knowledge of the membrane excitability of small nerve fibers both in healthy subjects, as well as during pathological conditions. Our research group has previously developed the perception threshold tracking technique to indirectly assess the membrane properties of peripheral small nerve fibers. In the current study, a new approach for studying membrane excitability by cooling small fibers, simultaneously with applying a slowly increasing electrical stimulation current, is evaluated. The first objective was to examine whether altered excitability during cooling could be detected by the perception threshold tracking technique. The second objective was to computationally model the underlying ionic current that could be responsible for cold induced alteration of small fiber excitability. The third objective was to evaluate whether computational modelling of cooling and electrical simulation can be used to generate hypotheses of ionic current changes in small fiber neuropathy. The excitability of the small fibers was assessed by the perception threshold tracking technique for the two temperature conditions, 20 °C and 32 °C. A detailed multi-compartment model was developed, including the ionic currents: NaTTXs, NaTTXr, NaP, KDr, KM, KLeak, KA, and Na/K-ATPase. The perception thresholds for the two long duration pulses (50 and 100 ms) were reduced when the skin temperature was lowered from 32 to 20 °C (p < 0.001). However, no significant effects were observed for the shorter durations (1 ms, p = 0.116; 5 ms p = 0.079, rmANOVA, Sidak). The computational model predicted that the reduction in the perception thresholds related to long duration pulses may originate from a reduction of the KLeak channel and the Na/K-ATPase. For short durations, the effect cancels out due to a reduction of the transient TTX resistant sodium current (Nav1.8). Additionally, the result from the computational model indicated that cooling simultaneously with electrical stimulation, may increase the knowledge regarding pathological alterations of ionic currents. Cooling may alter the ionic current during electrical stimulation and thereby provide additional information regarding membrane excitability of small fibers in healthy subjects and potentially also during pathological conditions.

  • Preferential activation of small cutaneous fibers through small pin electrode also depends on the shape of a long duration electrical current
    BMC Neurosci. (IF 2.62) Pub Date : 2019-09-14
    Rosa Hugosdottir; Carsten Dahl Mørch; Ole Kæseler Andersen; Thordur Helgason; Lars Arendt-Nielsen

    Electrical stimulation is widely used in experimental pain research but it lacks selectivity towards small nociceptive fibers. When using standard surface patch electrodes and rectangular pulses, large fibers are activated at a lower threshold than small fibers. Pin electrodes have been designed for overcoming this problem by providing a higher current density in the upper epidermis where the small nociceptive fibers mainly terminate. At perception threshold level, pin electrode stimuli are rather selectively activating small nerve fibers and are perceived as painful, but for high current intensity, which is usually needed to evoke sufficient pain levels, large fibers are likely co-activated. Long duration current has been shown to elevate the threshold of large fibers by the mechanism of accommodation. However, it remains unclear whether the mechanism of accommodation in large fibers can be utilized to activate small fibers even more selectively by combining pin electrode stimulation with a long duration pulse. In this study, perception thresholds were determined for a patch- and a pin electrode for different pulse shapes of long duration. The perception threshold ratio between the two different electrodes was calculated to estimate the ability of the pulse shapes to preferentially activate small fibers. The perception threshold ratios were compared between stimulation pulses of 5- and 50 ms durations and shapes of: exponential increase, linear increase, bounded exponential, and rectangular. Qualitative pain perception was evaluated for all pulse shapes delivered at 10 times perception threshold. The results showed a higher perception threshold ratio for long duration 50 ms pulses than for 5 ms pulses. The highest perception threshold ratio was found for the 50 ms, bounded exponential pulse shape. Results furthermore revealed different strength-duration relation between the bounded exponential- and rectangular pulse shapes. Pin electrode stimulation at high intensity was mainly described as “stabbing”, “shooting”, and “sharp”. These results indicate that long duration pulses with a bounded exponential increase preferentially activate the small nociceptive fibers with a pin electrode and concurrently cause elevated threshold of large non-nociceptive fibers with patch electrodes.

  • Analgesic treatment limits surrogate parameters for early stress and pain response after experimental subarachnoid hemorrhage
    BMC Neurosci. (IF 2.62) Pub Date : 2019-09-18
    Irina Staib-Lasarzik; Nadine Nagel; Anne Sebastiani; Eva-Verena Griemert; Serge C. Thal

    In animal research, authorities require a classification of anticipated pain levels and a perioperative analgesia protocol prior to approval of the experiments. However, data on this topic is rare and so is the reported use of analgesics. We determined surrogate parameters of pain and general well-being after subarachnoid hemorrhage (SAH), as well as the potential for improvement by different systemic analgesia paradigms. Brain injury was induced by filament perforation to mimic SAH. Sham-operated mice were included as surgical control groups with either neck or no-neck preparation. Mice with controlled cortical impact (CCI) injury were included as a control group with traumatic brain injury (TBI), but without neck preparation. Mice were randomized to buprenorphine, carprofen, meloxicam, or vehicle treatment. 24 h after SAH, CCI or sham surgery, pain and stress levels were assessed with a visual assessment score and the amount of food intake was recorded. Neck preparation, which is required to expose the surgical field for SAH induction, already increased pain/stress levels and sham surgeries for both CCI and SAH reduced food intake. Pain/stress levels were higher and food intake was lower after SAH compared with CCI. Pain/stress levels after CCI without analgesic treatment were similar to levels after SAH sham surgery. Pain treatment with buprenorphine was effective to reduce pain after SAH, whereas lower pain/stress intensity levels after CCI were not improved. This study emphasizes the importance of pain and stress assessment after surgeries and the efficacy of buprenorphine to improve pain and comfort levels after experimental SAH.

  • Mouse corticospinal system comprises different functional neuronal ensembles depending on their hodology
    BMC Neurosci. (IF 2.62) Pub Date : 2019-09-23
    Rafael Olivares-Moreno; Mónica López-Hidalgo; Alain Altamirano-Espinoza; Adriana González-Gallardo; Anaid Antaramian; Verónica Lopez-Virgen; Gerardo Rojas-Piloni

    Movement performance depends on the synaptic interactions generated by coherent parallel sensorimotor cortical outputs to different downstream targets. The major outputs of the neocortex to subcortical structures are driven by pyramidal tract neurons (PTNs) located in layer 5B. One of the main targets of PTNs is the spinal cord through the corticospinal (CS) system, which is formed by a complex collection of distinct CS circuits. However, little is known about intracortical synaptic interactions that originate CS commands and how different populations of CS neurons are functionally organized. To further understand the functional organization of the CS system, we analyzed the activity of unambiguously identified CS neurons projecting to different zones of the same spinal cord segment using two-photon calcium imaging and retrograde neuronal tracers. Sensorimotor cortex slices obtained from transgenic mice expressing GCaMP6 funder the Thy1 promoter were used to analyze the spontaneous calcium transients in layer 5 pyramidal neurons. Distinct subgroups of CS neurons projecting to dorsal horn and ventral areas of the same segment show more synchronous activity between them than with other subgroups. The results indicate that CS neurons projecting to different spinal cord zones segregated into functional ensembles depending on their hodology, suggesting that a modular organization of CS outputs controls sensorimotor behaviors in a coordinated manner.

  • The role of PI3K-mediated AMPA receptor changes in post-conditioning of propofol in brain protection
    BMC Neurosci. (IF 2.62) Pub Date : 2019-10-01
    Chenxu Wang; Ying Wei; Yuan Yuan; Yonghao Yu; Keliang Xie; Beibei Dong; Yuan Shi; Guolin Wang

    We aimed to study the role of amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) glutamate receptor 2 (GluR2) subunit trafficking, and activity changes in short-term neuroprotection provided by propofol post-conditioning. We also aimed to determine the role of phosphoinositide-3-kinase (PI3K) in the regulation of these processes. Rats underwent 1 h of focal cerebral ischemia followed by 23 h of reperfusion were randomly divided into 6 groups (n = 36 per group): sham- operation (S), ischemia–reperfusion (IR), propofol (P group, propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion), and LY294002 (PI3K non-selective antagonist) + sham (L + S, LY294002 of 1.5 mg/kg was infused 30 min before sham operation), LY294002+ ischemia–reperfusion (L + IR, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion), LY294002 + IR + propofol (L + P, LY294002 of 1.5 mg/kg was infused 30 min before middle cerebral artery occlusion and propofol 20 mg/kg/h at the onset of reperfusion for 2 h after 60 min of occlusion). Compared with group IR, rats in group P had significant lower neurologic defect scores and infarct volume. Additionally, consistent with enhanced expression of PI3K-AMPAR GluR2 subunit complex substances in ipsilateral hippocampus, GluR2 subunits showed increased levels in both the plasma and postsynaptic membranes of neurons, while pGluR2 expression was reduced in group P. Furthermore, LY294002, the PI3K non-selective antagonist, blocked those effects. These observations demonstrated that propofol post-conditioning revealed acute neuroprotective role against transient MCAO in rats. The short-term neuroprotective effect was contributed by enhanced GluR2 subunits trafficking to membrane and postsynaptic membranes of neurons, as well as down-regulated the expression of pGluR2 in damaged hippocampus. Finally, the above-mentioned protective mechanism might be contributed by increased combination of PI3K to AMPAR GluR2 subunit, thus maintained the expression and activation of AMPAR GluR2 in the ipsilateral hippocampus.

  • Synaptic plasticity in hippocampal CA1 neurons and learning behavior in acute kidney injury, and estradiol replacement in ovariectomized rats
    BMC Neurosci. (IF 2.62) Pub Date : 2019-10-04
    Fatemeh Sharifi; Parham Reisi; Maryam Malek

    Neurological complications may occur in patients with acute or chronic renal failure; however, in cases of acute renal failure, the signs and symptoms are usually more pronounced, and progressed rapidly. Oxidative stress and nitric oxide in the hippocampus, following kidney injury may be involved in cognitive impairment in patients with uremia. Although many women continue taking hormone therapy for menopausal symptom relief, but there are also some controversies about the efficacy of exogenous sex hormones, especially estrogen therapy alone, in postmenopausal women with kidney injury. Herein, to the best of our knowledge for the first time, spatial memory and synaptic plasticity at the CA1 synapse of a uremic ovariectomized rat model of menopause was characterized by estradiol replacement alone. While estradiol replacement in ovariectomized rats without uremia, promotes synaptic plasticity, it has an impairing effect on spatial memory through hippocampal oxidative stress under uremic conditions, with no change on synaptic plasticity. It seems that exogenous estradiol potentiated the deleterious effect of acute kidney injury (AKI) with increasing hippocampal oxidative stress. Although, estrogen may have some positive effects on cognitive function in healthy subjects, but its efficacy in menopause subjects under uremic states such as renal transplantation, needs to be further investigated in terms of dosage and duration.

  • Weak correlations between serum and cerebrospinal fluid levels of estradiol, progesterone and testosterone in males
    BMC Neurosci. (IF 2.62) Pub Date : 2019-10-16
    Jan Martin; Eva Plank; Bettina Jungwirth; Alexander Hapfelmeier; Armin Podtschaske; Simone M. Kagerbauer

    Neuroactive steroids seem to be implicated in a variety of neurophysiological and behavioral processes, such as sleep, learning, memory, stress, feeding and aging. Numerous studies have also addressed this implication in various cerebral disorders and diseases. Yet, the correlation and association between steroids in the periphery, e.g. blood, and the central compartments, e.g. cerebrospinal fluid (CSF), have not yet been comprehensively assessed. As the brain is not directly accessible, and the collection of human CSF usually requires invasive procedures, easier accessible compartments, such as blood, have always attracted attention. However, studies in humans are scarce. In the present study we determined estradiol, progesterone and testosterone levels in CSF and serum of 22 males without cerebral disorders or diseases. Samples were taken under conditions corresponding closest to basal conditions with patients expecting only spinal anesthesia and minor surgery. All samples per patient were collected concomitantly. Total estradiol, progesterone and testosterone concentrations were measured by electro-chemiluminescence immunoassay. The strength of correlation was assessed by Spearman’s rank correlation coefficient. Correlation analysis revealed merely weak to very weak correlations for estradiol, progesterone and testosterone respectively between the CSF and serum compartments. Total steroid levels of estradiol, progesterone and testosterone in CSF and serum of males without neurological disorders were determined. Weak to very weak correlations between CSF and serum were found thus suggesting that concentrations in the periphery do not parallel concentrations in the central compartments. Further research is needed to clarify to what extent and under which conditions serum levels of estradiol, progesterone and testosterone may possibly serve as a biomarker reflecting the respective concentrations in the CSF or in the brain.

Contents have been reproduced by permission of the publishers.