当前期刊: BMC Genetics Go to current issue    加入关注   
显示样式:        排序: 导出
  • The primordial tRNA acceptor stem code from theoretical minimal RNA ring clusters
    BMC Genet. (IF 2.547) Pub Date : 2020-01-23
    Jacques Demongeot; Hervé Seligmann

    Theoretical minimal RNA rings code by design over the shortest length once for each of the 20 amino acids, a start and a stop codon, and form stem-loop hairpins. This defines at most 25 RNA rings of 22 nucleotides. As a group, RNA rings mimick numerous prebiotic and early life biomolecular properties: tRNAs, deamination gradients and replication origins, emergence of codon preferences for the natural circular code, and contents of early protein coding genes. These properties result from the RNA ring’s in silico design, based mainly on coding nonredundancy among overlapping translation frames, as the genetic code’s codon-amino acid assignments determine. RNA rings resemble ancestral tRNAs, defining RNA ring anticodons and corresponding cognate amino acids. Surprisingly, all examined RNA ring properties coevolve with genetic code integration ranks of RNA ring cognates, as if RNA rings mimick prebiotic and early life evolution. Distances between RNA rings were calculated using different evolutionary models. Associations between these distances and genetic code evolutionary hypotheses detect evolutionary models best describing RNA ring diversification. Here pseudo-phylogenetic analyses of RNA rings produce clusters corresponding to the primordial code in tRNA acceptor stems, more so when substitution matrices from neutrally evolving pseudogenes are used rather than from functional protein coding genes reflecting selection for conserving amino acid properties. Results indicate RNA rings with recent cognates evolved from those with early cognates. Hence RNA rings, as designed by the genetic code’s structure, simulate tRNA stem evolution and prebiotic history along neutral chemistry-driven mutation regimes.

  • Distribution of allele frequencies for genes associated with physical activity and/or physical capacity in a homogenous Norwegian cohort- a cross-sectional study
    BMC Genet. (IF 2.547) Pub Date : 2020-01-23
    Sannija Goleva-Fjellet; Anne Mari Bjurholt; Elin H. Kure; Inger Kristin Larsen; Øyvind Støren; Mona Sæbø

    There are large individual differences in physical activity (PA) behavior as well as trainability of physical capacity. Heritability studies have shown that genes may have as much impact on exercise participation behavior as environmental factors. Genes that favor both trainability and participation may increase the levels of PA. The present study aimed to assess the allele frequencies in genes associated with PA and/or physical capacity, and to see if there is any association between these polymorphisms and self-reported PA levels in a cohort of middle-aged Norwegians of Scandinavian descent (n = 831; mean age mean age (± SD) 55.5 ± 3.8 years). The genotype distributions of the ACTN3 R577X, ACE I/D and MAOA uVNTR polymorphisms were similar to other populations of European descent. When comparing the genotype distribution between the low/medium level PA group (LMPA) and high level PA groups (HPA), a significant difference in ACTN3 577X allele distribution was found. The X allele frequency was 10% lower in the HPA level group (P = 0.006). There were no differences in the genotype distribution of the ACE I/D or MAOA uVNTR polymorphism. Education and previous participation in sports or outdoor activities was positively associated with the self-reported PA levels (P ≤ 0.001). To the best of our knowledge, this is the first study to report association between ACTN3 R577X genotype and PA level in middle-aged Scandinavians. Nevertheless, the contribution of a single polymorphism to a complex trait, like PA level, is likely small. Socioeconomic variables, as education and previous participation in sports or outdoor activities, are positively associated with the self-reported PA levels.

  • Mining of favorable alleles for seed reserve utilization efficiency in Oryza sativa by means of association mapping
    BMC Genet. (IF 2.547) Pub Date : 2020-01-16
    Nour Ali; Dalu Li; Moaz S. Eltahawy; Dina Abdulmajid; Lal Bux; Erbao Liu; Xiaojing Dang; Delin Hong

    Wet direct-seeded rice is a possible alternative to conventional puddled transplanted rice; the former uses less water and reduces labor requirements. Improving seed reserve utilization efficiency (SRUE) is a key factor in facilitating the application of this technology. However, the QTLs controlling this trait are poorly investigated. In this study, a genome-wide association study (GWAS) was conducted using a natural population composed of 542 accessions of rice (Oryza sativa L.) which were genotyped using 266 SSR markers. Large phenotypic variations in SRUE were found in the studied population. The average SRUE over 542 accessions across two years (2016 and 2017) was 0.52 mg.mg− 1, ranging from 0.22 mg.mg-1 to 0.93 mg.mg− 1, with a coefficient of variation of 22.66%. Overall, 2879 marker alleles were detected in the population by 266 pairs of SSR markers, indicating a large genetic variation existing in the population. Using general linear model method, 13 SSR marker loci associated with SRUE were detected and two (RM7309 and RM434) of the 13 loci, were also detected using mixed linear model analyses, with percentage of phenotypic variation explained (PVE) greater than 5% across two years. The 13 association loci (P < 0.01) were located on all chromosomes except chromosome 11, with PVE ranging from 5.05% (RM5158 on chromosome 5) to 12% (RM297 on chromosome 1). Association loci RM7309 on chromosome 6 and RM434 on chromosome 9 revealed by both models were detected in both years. Twenty-three favorable alleles were identified with phenotypic effect values (PEV) ranging from 0.10 mg.mg− 1 (RM7309–135 bp on chromosome 9) to 0.45 mg.mg− 1 (RM297–180 bp on chromosome 2). RM297–180 bp showed the largest phenotypic effect value (0.44 mg.mg− 1 in 2016 and 0.45 mg.mg− 1 in 2017) with 6.72% of the accessions carrying this allele and the typical carrier accession was Manyedao, followed by RM297–175 bp (0.43 mg.mg− 1 in 2016 and 0.44 mg.mg− 1 in 2017). Nine novel association loci for SRUE were identified, compared with previous studies. The optimal parental combinations for pyramiding more favorable alleles for SRUE were selected and could be used for breeding rice accessions suitable for wet direct seeding in the future.

  • Accumulation of genetic variants associated with immunity in the selective breeding of broilers
    BMC Genet. (IF 2.547) Pub Date : 2020-01-17
    Angela Zou; Kerry Nadeau; Pauline W. Wang; Jee Yeon Lee; David S. Guttman; Shayan Sharif; Doug R. Korver; John H. Brumell; John Parkinson

    To satisfy an increasing demand for dietary protein, the poultry industry has employed genetic selection to increase the growth rate of broilers by over 400% in the past 50 years. Although modern broilers reach a marketable weight of ~ 2 kg in a short span of 35 days, a speed twice as fast as a broiler 50 years ago, the expedited growth has been associated with several negative detrimental consequences. Aside from heart and musculoskeletal problems, which are direct consequences of additional weight, the immune response is also thought to be altered in modern broilers. Given that identifying the underlying genetic basis responsible for a less sensitive innate immune response would be economically beneficial for poultry breeding, we decided to compare the genomes of two unselected meat control strains that are representative of broilers from 1957 and 1978, and a current commercial broiler line. Through analysis of genetic variants, we developed a custom prioritization strategy to identify genes and pathways that have accumulated genetic changes and are biologically relevant to immune response and growth performance. Our results highlight two genes, TLR3 and PLIN3, with genetic variants that are predicted to enhance growth performance at the expense of immune function. Placing these new genomes in the context of other chicken lines, reveal genetic changes that have specifically arisen in selective breeding programs that were implemented in the last 50 years.

  • Trait-based mapping to identify the genetic factors underlying anaerobic germination of rice: Phenotyping, GXE, and QTL mapping
    BMC Genet. (IF 2.547) Pub Date : 2020-01-17
    Sharmistha Ghosal; Fergie Ann Quilloy; Carlos Casal; Endang M. Septiningsih; Merlyn S. Mendioro; Shalabh Dixit

    Anaerobic germination is one of the most important traits for rice under direct-seeded conditions. The trait reduces risk of crop failure due to waterlogged conditions after seeding and allows water to be used as a means of weed control. The identification of QTLs and causal genes for anaerobic germination will facilitate breeding for improved direct-seeded rice varieties. In this study, we explored a BC1F2:3 population developed from a cross between BJ1, an indica landrace, and NSIC Rc222, a high-yielding recurrent parent. The population was phenotyped under different screening methods (anaerobic screenhouse, anaerobic tray, and aerobic screenhouse) to establish the relationship among the methods and to identify the most suitable screening method, followed by bulk segregant analysis (BSA) to identify large-effect QTLs. The study showed high heritability for survival (SUR) under all three phenotyping conditions. Although high correlation was observed within screening environments between survival at 14 and 21 days after seeding, the correlation across environments was low. Germination under aerobic and anaerobic conditions showed very low correlation, indicating the independence of their genetic control. The results were further confirmed through AMMI analysis. Four significant markers with an effect on anaerobic germination were identified through BSA. CIM analysis revealed qAG1–2, qAG6–2, qAG7–4, and qAG10–1 having significant effects on the trait. qAG6–2 and qAG10–1 were consistent across screening conditions and seedling age while qAG1–2 and qAG7–4 were specific to screening methods. All QTLs showed an effect when survival across all screening methods was analyzed. Together, the QTLs explained 39 to 55% of the phenotypic variation for survival under anaerobic conditions. No QTL effects were observed under aerobic conditions. The study helped us understand the effect of phenotyping method on anaerobic germination, which will lead to better phenotyping for this trait in future studies. The QTLs identified through this study will allow the improvement of breeding lines for the trait through marker-assisted selection or through forward breeding approaches such as genomic selection. The high frequency of the BJ1 allele of these QTLs will enhance the robustness of germination under anaerobic conditions in inbred and hybrid rice varieties.

  • The effects of the DNA Demethylating reagent, 5-azacytidine on SMCHD1 genomic localization
    BMC Genet. (IF 2.547) Pub Date : 2020-01-15
    S. Massah; J. Jubene; F. J. S. Lee; T. V. Beischlag; G. G. Prefontaine

    DNA methylation is an epigenetic modification that mainly repress expression of genes essential during embryogenesis and development. There are key ATPase-dependent enzymes that read or write DNA methylation to remodel chromatin and regulate gene expression. Structural maintenance of chromosome hinge domain containing 1 (SMCHD1) is an architectural protein that regulates expression of numerous genes, some of which are imprinted, that are sensitive to DNA methylation. In addition, SMCHD1 germline mutations lead to developmental diseases; facioscapulohumoral muscular dystrophy (FSHD), bosma arhinia and micropthalmia (BAMS). Current evidence suggests that SMCHD1 functions through maintenance or de novo DNA methylation required for chromatin compaction. However, it is unclear if DNA methylation is also essential for genomic recruitment of SMCHD1 and its role as an architectural protein. We previously isolated SMCHD1 using a methylated DNA region from mouse pituitary growth hormone (Gh1) promoter, suggesting that methylation is required for SMCHD1 DNA binding. The goal of this study was to further understand DNA methylation directed role of SMCHD1 in regulating gene expression. Therefore, we profiled SMCHD1 genome wide occupancy in human neuroblastoma SH-SY5Y cells and evaluated if DNA methylation is required for SMCHD1 genomic binding by treating cells with the DNA demethylating reagent, 5-azacytidine (5-azaC). Our data suggest that the majority of SMCHD1 binding occurs in intron and intergenic regions. Gene ontology analysis of genes associated with SMCHD1 genomic occupancy that is sensitive to 5-azaC treatment suggests SMCHD1 involvement in central nervous system development. The potassium voltage-gated channel subfamily Q member1 (KCNQ1) gene that associates with central nervous system is a known SMCHD1 target. We showed SMCHD1 binding to an intronic region of KCNQ1 that is lost following 5-azaC treatment suggesting DNA methylation facilitated binding of SMCHD1. Indeed, deletion of SMCHD1 by CRISPR- Cas9 increases KCNQ1 gene expression confirming its role in regulating KCNQ1 gene expression. These findings provide novel insights on DNA methylation directed function of SMCHD1 in regulating expression of genes associated with central nervous system development that impact future drug development strategies.

  • Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using simple sequence repeat markers
    BMC Genet. (IF 2.547) Pub Date : 2020-01-06
    Cun Chen; Yanguang Chu; Changjun Ding; Xiaohua Su; Qinjun Huang

    Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.

  • Copy number variation of CCL3L1 among three major ethnic groups in Malaysia
    BMC Genet. (IF 2.547) Pub Date : 2020-01-03
    Jalilah Jamaluddin; Nur Khairina Mohd Khair; Shameni Devi Vinodamaney; Zulkefley Othman; Suhaili Abubakar

    C-C motif Chemokine Ligand 3 Like 1 (CCL3L1) is a multiallelic copy number variable, which plays a crucial role in immunoregulatory and hosts defense through the production of macrophage inflammatory protein (MIP)-1α. Variable range of the CCL3L1 copies from 0 to 14 copies have been documented in several different populations. However, there is still lack of report on the range of CCL3L1 copy number exclusively among Malaysians who are a multi-ethnic population. Thus, this study aims to extensively examine the distribution of CCL3L1 copy number in the three major populations from Malaysia namely Malay, Chinese and Indian. A diploid copy number of CCL3L1 for 393 Malaysians (Malay = 178, Indian = 90, and Chinese = 125) was quantified using Paralogue Ratio Tests (PRTs) and then validated with microsatellites analysis. To our knowledge, this is the first report on the CCL3L1 copy number that has been attempted among Malaysians and the Chinese ethnic group exhibits a diverse pattern of CCL3L1 distribution copy number from the Malay and Indian (p < 0.0001). The CCL3L1 ranged from 0 to 8 copies for both the Malay and Indian ethnic groups while 0 to 10 copies for the Chinese ethnic. Consequently, the CCL3L1 copy number among major ethnic groups in the Malaysian population is found to be significantly varied when compared to the European population (p < 0.0001). The mean/median reported for the Malay, Chinese, Indian, and European are 2.759/2.869, 3.453/3.290, 2.437/1.970 and 2.001/1.940 respectively. This study reveals the existence of genetic variation of CCL3L1 in the Malaysian population, and suggests by examining genetic diversity on the ethnicity, and specific geographical region could help in reconstructing human evolutionary history and for the prediction of disease risk related to the CCL3L1 copy number.

  • Detection and application of genome-wide variations in peach for association and genetic relationship analysis
    BMC Genet. (IF 2.547) Pub Date : 2019-12-30
    Liping Guan; Ke Cao; Yong Li; Jian Guo; Qiang Xu; Lirong Wang

    Peach (Prunus persica L.) is a diploid species and model plant of the Rosaceae family. In the past decade, significant progress has been made in peach genetic research via DNA markers, but the number of these markers remains limited. In this study, we performed a genome-wide DNA markers detection based on sequencing data of six distantly related peach accessions. A total of 650,693~1,053,547 single nucleotide polymorphisms (SNPs), 114,227~178,968 small insertion/deletions (InDels), 8386~12,298 structure variants (SVs), 2111~2581 copy number variants (CNVs) and 229,357~346,940 simple sequence repeats (SSRs) were detected and annotated. To demonstrate the application of DNA markers, 944 SNPs were filtered for association study of fruit ripening time and 15 highly polymorphic SSRs were selected to analyze the genetic relationship among 221 accessions. The results showed that the use of high-throughput sequencing to develop DNA markers is fast and effective. Comprehensive identification of DNA markers, including SVs and SSRs, would be of benefit to genetic diversity evaluation, genetic mapping, and molecular breeding of peach.

  • Functional mutation allele mining of plant architecture and yield-related agronomic traits and characterization of their effects in wheat
    BMC Genet. (IF 2.547) Pub Date : 2019-12-30
    Huijun Guo; Hongchun Xiong; Yongdun Xie; Linshu Zhao; Jiayu Gu; Shirong Zhao; Yuping Ding; Luxiang Liu

    Wheat mutant resources with phenotypic variation have been developed in recent years. These mutants might carry favorable mutation alleles, which have the potential to be utilized in the breeding process. Plant architecture and yield-related features are important agronomic traits for wheat breeders and mining favorable alleles of these traits will improve wheat characteristics. Here we used 190 wheat phenotypic mutants as material and by analyzing their SNP variation and phenotypic data, mutation alleles for plant architecture and yield-related traits were identified, and the genetic effects of these alleles were evaluated. In total, 32 mutation alleles, including three pleiotropic alleles, significantly associated with agronomic traits were identified from the 190 wheat mutant lines. The SNPs were distributed on 12 chromosomes and were associated with plant height (PH), tiller number, flag leaf angle (FLA), thousand grain weight (TGW), and other yield-related traits. Further phenotypic analysis of multiple lines carrying the same mutant allele was performed to determine the effect of the allele on the traits of interest. PH-associated SNPs on chromosomes 2BL, 3BS, 3DL, and 5DL might show additive effects, reducing PH by 10.0 cm to 31.3 cm compared with wild type, which means that these alleles may be favorable for wheat improvement. Only unfavorable mutation alleles that reduced TGW and tiller number were identified. A region on chromosome 5DL with mutation alleles for PH and TGW contained several long ncRNAs, and their sequences shared more than 90% identity with cytokinin oxidase/dehydrogenase genes. Some of the mutation alleles we mined were colocalized with previously reported QTLs or genes while others were novel; these novel alleles could also result in phenotypic variation. Our results demonstrate that favorable mutation alleles are present in mutant resources, and the region between 409.5 to 419.8 Mb on chromosome 5DL affects wheat plant height and thousand grain weight.

  • Effects of cage and floor rearing system on the factors of antioxidant defense and inflammatory injury in laying ducks
    BMC Genet. (IF 2.547) Pub Date : 2019-12-30
    Yang Zhang; Tiantian Gu; Yong Tian; Li Chen; Guoqin Li; Wei Zhou; Guofa Liu; Xinsheng Wu; Tao Zeng; Qi Xu; Guohong Chen; Lizhi Lu

    Cage-rearing in laying ducks, as a novel rearing system, not only fundamentally solves the pollution problem of the duck industry and improve bio-safety and product quality but also exhibits more benefits by implementing standardized production compared with the floor-rearing. Of course, this system also brings some welfare problems and stress injuries to layers due to lack of water environment and limited activities in the cages. However, the effects on the factors of antioxidant defense and inflammatory injury in the early cage stage are not well-understood. In this study, eighty Shaoxing layers were reared on floor and in cages from 12 weeks of age. The ducks were caged 1, 2, 4, 7, and 10 days, the factors of antioxidant defense and inflammatory injury were investigated. The results showed that the caged ducks suffered liver injury to a certain extent when the ducks were just put into the cages. Analysis of antioxidant enzyme activities indicated that the different rearing system could not affect the change of antioxidant capacities, while the liver malondialdehyde (MDA) level was significant higher in the 2-d, 7-d, and 10-d ducks compared with the 1-d ducks during the change of days, while catalase (CAT) activity showed the opposite results. Additionally, quantitative real-time PCR (qRT-RCR) revealed that the relative mRNA levels of endoplasmic reticulum (ER) stress-related gene (CHOP and GRP78) were significantly upregulated in cage rearing ducks compared to that of the floor rearing ducks. Moreover, the mRNA levels of inflammatory cytokines including cycloxygenase-2 (COX-2), nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin 2 (IL-2) and Interleukin 6 (IL-6), were also increased significantly in caged layers. Taken together, although antioxidant defense has no obvious effect on cage stress, the stress levels of laying ducks vary greatly in the early cage stage, which not only caused liver tissue damage to some extent, but also resulted in increases in the expression of the factors of inflammatory injury. Therefore, we recommend that anti-stress agents should be added in the feed to alleviate the stress in the early cage stage.

  • Population genetic structure and habitat connectivity for jaguar (Panthera onca) conservation in Central Belize
    BMC Genet. (IF 2.547) Pub Date : 2019-12-27
    Angelica Menchaca; Natalia A. Rossi; Jeremy Froidevaux; Isabela Dias-Freedman; Anthony Caragiulo; Claudia Wultsch; Bart Harmsen; Rebecca Foster; J. Antonio de la Torre; Rodrigo A. Medellin; Salisa Rabinowitz; George Amato

    Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.

  • Associations between potentially functional CORIN SNPs and serum corin levels in the Chinese Han population
    BMC Genet. (IF 2.547) Pub Date : 2019-12-19
    Huan Zhang; Xingbo Mo; Qiyu Qian; Zhengyuan Zhou; Zhengbao Zhu; Xinfeng HuangFu; Tan Xu; Aili Wang; Zhirong Guo; Shufeng Lei; Yonghong Zhang

    Corin is an important convertase involved in the natriuretic peptide system and may indirectly regulate blood pressure. Genetic factors relate to corin remain unclear. The purpose of the current study was to comprehensively examine the associations among CORIN SNPs, methylations, serum corin levels and hypertension. We genotyped 9 tag-SNPs in the CORIN gene and measured serum corin levels in 731 new-onset hypertensive cases and 731 age- and sex-matched controls. DNA methylations were tested in 43 individuals. Mendelian randomization was used to investigate the causal associations. Under additive models, we observed associations of rs2289433 (p.Cys13Tyr), rs6823184, rs10517195, rs2271037 and rs12509275 with serum corin levels after adjustment for covariates (P = 0.0399, 0.0238, 0.0016, 0.0148 and 0.0038, respectively). The tag-SNP rs6823184 and SNPs that are in strong linkage disequilibrium with it, i.e., rs10049713, rs6823698 and rs1866689, were associated with CORIN gene expression (P = 2.38 × 10− 24, 5.94 × 10− 27, 6.31 × 10− 27 and 6.30 × 10− 27, respectively). Neither SNPs nor corin levels was found to be associated with hypertension. SNP rs6823184, which is located in a DNase hypersensitivity cluster, a CpG island and transcription factor binding sites, was significantly associated with cg02955940 methylation levels (P = 1.54 × 10− 7). A putative causal association between cg02955940 methylation and corin levels was detected (P = 0.0011). This study identified potentially functional CORIN SNPs that were associated with serum corin level in the Chinese Han population. The effect of CORIN SNPs on corin level may be mediated by DNA methylation.

  • Genome-wide association study of morbid obesity in Han Chinese
    BMC Genet. (IF 2.547) Pub Date : 2019-12-18
    Kuang-Mao Chiang; Heng-Cheng Chang; Hsin-Chou Yang; Chien-Hsiun Chen; Hsin-Hung Chen; Wei-Jei Lee; Wen-Harn Pan

    As obesity is becoming pandemic, morbid obesity (MO), an extreme type of obesity, is an emerging issue worldwide. It is imperative to understand the factors responsible for huge weight gain in certain populations in the modern society. Very few genome-wide association studies (GWAS) have been conducted on MO patients. This study is the first MO-GWAS study in the Han-Chinese population in Asia. We conducted a two-stage GWAS with 1110 MO bariatric patients (body mass index [BMI] ≥ 35 kg/m2) from Min-Sheng General Hospital, Taiwan. The first stage involved 575 patients, and 1729 sex- and age-matched controls from the Taiwan Han Chinese Cell and Genome Bank. In the second stage, another 535 patients from the same hospital were genotyped for 52 single nucleotide polymorphisms (SNPs) discovered in the first stage, and 9145 matched controls from Taiwan Biobank were matched for confirmation analysis. The results of the joint analysis for the second stage revealed six top ranking SNPs, including rs8050136 (p-value = 7.80 × 10− 10), rs9939609 (p-value = 1.32 × 10− 9), rs1421085 (p-value = 1.54 × 10− 8), rs9941349 (p-value = 9.05 × 10− 8), rs1121980 (p-value = 7.27 × 10− 7), and rs9937354 (p-value = 6.65 × 10− 7), which were all located in FTO gene. Significant associations were also observed between MO and RBFOX1, RP11-638 L3.1, TMTC1, CBLN4, CSMD3, and ERBB4, respectively, using the Bonferroni correction criteria for 52 SNPs (p < 9.6 × 10− 4). The most significantly associated locus of MO in the Han-Chinese population was the well-known FTO gene. These SNPs located in intron 1, may include the leptin receptor modulator. Other significant loci, showing weak associations with MO, also suggested the potential mechanism underlying the disorders with eating behaviors or brain/neural development.

  • Cloning, characterization of TaGS3 and identification of allelic variation associated with kernel traits in wheat (Triticum aestivum L.)
    BMC Genet. (IF 2.547) Pub Date : 2019-12-18
    Jian Yang; Yanjie Zhou; Yu’e Zhang; Weiguo Hu; Qiuhong Wu; Yongxing Chen; Xicheng Wang; Guanghao Guo; Zhiyong Liu; Tingjie Cao; Hong Zhao

    Grain weight is an important yield component. Selection of advanced lines with heavy grains show high grain sink potentials and strong sink activity, which is an increasingly important objective in wheat breeding programs. Rice OsGS3 has been identified as a major quantitative trait locus for both grain weight and grain size. However, allelic variation of GS3 has not been characterized previously in hexaploid wheat. We cloned 2445, 2393, and 2409 bp sequences of the homologs TaGS3-4A, TaGS3-7A, and TaGS3-7D in wheat ‘Changzhi 6406’, a cultivar that shows high grain weight. The TaGS3 genes each contained five exons and four introns, and encoded a deduced protein of 170, 169, and 169 amino acids, respectively. Phylogenetic analysis of plant GS3 protein sequences revealed GS3 to be a monocotyledon-specific gene and the GS3 proteins were resolved into three classes. The length of the atypical Gγ domain and the cysteine-rich region was conserved within each class and not conserved between classes. A single-nucleotide polymorphism in the fifth exon (at position 1907) of TaGS3-7A leads to an amino acid change (ALA/THR) and showed different frequencies in two pools of Chinese wheat accessions representing extremes in grain weight. Association analysis indicated that the TaGS3-7A-A allele was associated with higher grain weight in the natural population. The TaGS3-7A-A allele was favoured in global modern wheat cultivars but the allelic frequency varied among different wheat-production regions of China, which indicated that this allele is of potential utility to improve wheat grain weight in certain wheat-production areas of China. The novel molecular information on wheat GS3 homologs and the KASP functional marker designed in this study may be useful in marker-assisted breeding for genetic improvement of wheat.

  • First evaluation of resistance to both a California OsHV-1 variant and a French OsHV-1 microvariant in Pacific oysters
    BMC Genet. (IF 2.547) Pub Date : 2019-12-12
    Konstantin Divilov; Blaine Schoolfield; Benjamin Morga; Lionel Dégremont; Colleen A. Burge; Daniel Mancilla Cortez; Carolyn S. Friedman; Gary B. Fleener; Brett R. Dumbauld; Chris Langdon

    Variants of the Ostreid herpesvirus 1 (OsHV-1) cause high losses of Pacific oysters globally, including in Tomales Bay, California, USA. A suite of new variants, the OsHV-1 microvariants (μvars), cause very high mortalities of Pacific oysters in major oyster-growing regions outside of the United States. There are currently no known Pacific oysters in the United States that are resistant to OsHV-1 as resistance has yet to be evaluated in these oysters. As part of an effort to begin genetic selection for resistance to OsHV-1, 71 families from the Molluscan Broodstock Program, a US West Coast Pacific oyster breeding program, were screened for survival after exposure to OsHV-1 in Tomales Bay. They were also tested in a quarantine laboratory in France where they were exposed to a French OsHV-1 microvariant using a plate assay, with survival recorded from three to seven days post-infection. Significant heritability for survival were found for all time points in the plate assay and in the survival phenotype from a single mortality count in Tomales Bay. Genetic correlations between survival against the French OsHV-1 μvar in the plate assay and the Tomales Bay variant in the field trait were weak or non-significant. Future breeding efforts will seek to validate the potential of genetic improvement for survival to OsHV-1 through selection using the Molluscan Broodstock Program oysters. The lack of a strong correlation in survival between OsHV-1 variants under this study’s exposure conditions may require independent selection pressure for survival to each variant in order to make simultaneous genetic gains in resistance.

  • Glyoxalase 1 gene improves the antistress capacity and reduces the immune inflammatory response
    BMC Genet. (IF 2.547) Pub Date : 2019-12-10
    Fukuan Du; Yan Li; Jing Shen; Yueshui Zhao; Parham Jabbarzadeh Kaboli; Shixin Xiang; Xu Wu; Mingxing Li; Jiangyao Zhou; Yuan Zheng; Tao Yi; Xiang Li; Jing Li; Zhangang Xiao; Qinglian Wen

    Fish immunity is not only affected by the innate immune pathways but is also triggered by stress. Transport and loading stress can induce oxidative stress and further activate the immune inflammatory response, which cause tissue damage and sudden death. Multiple genes take part in this process and some of these genes play a vital role in regulation of the immune inflammatory response and sudden death. Currently, the key genes regulating the immune inflammatory response and the sudden death caused by stress in Coilia nasus are unknown. In this study, we studied the effects of the Glo1 gene on stress, antioxidant expression, and immune-mediated apoptosis in C. nasus. The full-length gene is 4356 bp, containing six exons and five introns. Southern blotting indicated that Glo1 is a single-copy gene in the C. nasus genome. We found two single-nucleotide polymorphisms (SNPs) in the Glo1 coding region, which affect the three-dimensional structure of Glo1 protein. An association analysis results revealed that the two SNPs are associated with stress tolerance. Moreover, Glo1 mRNA and protein expression of the heterozygous genotype was significantly higher than that of the homozygous genotype. Na+ and sorbitol also significantly enhanced Glo1 mRNA and protein expression, improved the fish’s antioxidant capacity, and reduced the immune inflammatory response, thus sharply reducing the mortality caused by stress. Glo1 plays a potential role in the stress response, antioxidant capacity, and immune-mediated apoptosis in C. nasus.

  • Functional analysis of CfSnf1 in the development and pathogenicity of anthracnose fungus Colletotrichum fructicola on tea-oil tree
    BMC Genet. (IF 2.547) Pub Date : 2019-12-05
    Shengpei Zhang; Yuan Guo; Sizheng Li; Guoying Zhou; Junang Liu; Jianping Xu; He Li

    Tea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola. We characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca. oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi. This study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.

  • Molecular cytogenetics of valuable Arctic and sub-Arctic pasture grass species from the Aveneae/Poeae tribe complex (Poaceae)
    BMC Genet. (IF 2.547) Pub Date : 2019-12-04
    Alexandra V. Amosova; Svyatoslav A. Zoshchuk; Alexander V. Rodionov; Lilit Ghukasyan; Tatiana E. Samatadze; Elizaveta O. Punina; Igor G. Loskutov; Olga Yu. Yurkevich; Olga V. Muravenko

    Grasslands in the Arctic tundra undergo irreversible degradation due to climatic changes and also over-exploitation and depletion of scarce resources. Comprehensive investigations of cytogenomic structures of valuable Arctic and sub-Arctic grassland species is essential for clarifying their genetic peculiarities and phylogenetic relationships, and also successful developing new forage grass cultivars with high levels of adaptation, stable productivity and longevity. We performed molecular cytogenetic characterization of insufficiently studied pasture grass species (Poaceae) from related genera representing two neighboring clades: 1) Deschampsia and Holcus; 2) Alopecurus, Arctagrostis and Beckmannia, which are the primary fodder resources in the Arctic tundra. We constructed the integrated schematic maps of distribution of these species in the northern, central and eastern parts of Eurasia based on the currently available data as only scattered data on their occurrence is currently available. The species karyotypes were examined with the use of DAPI-banding, multicolour FISH with 35S rDNA, 5S rDNA and the (GTT)9 microsatellite motif and also sequential rapid multocolour GISH with genomic DNAs of Deschampsia sukatschewii, Deschampsia flexuosa and Holcus lanatus belonging to one of the studied clades. Cytogenomic structures of the species were specified; peculiarities and common features of their genomes were revealed. Different chromosomal rearrangements were detected in Beckmannia syzigachne, Deschampsia cespitosa and D. flexuosa; B chromosomes with distinct DAPI-bands were observed in karyotypes of D. cespitosa and H. lanatus. The peculiarities of distribution patterns of the examined chromosomal markers and also presence of common homologous DNA repeats in karyotypes of the studies species allowed us to verify their relationships. The obtained unique data on distribution areas and cytogenomic structures of the valuable Arctic and sub-Arctic pasture species are important for further genetic and biotechnological studies and also plant breeding progress.

  • Population size influences the type of nucleotide variations in humans
    BMC Genet. (IF 2.547) Pub Date : 2019-12-05
    Sankar Subramanian

    It is well known that the effective size of a population (Ne) is one of the major determinants of the amount of genetic variation within the population. However, it is unclear whether the types of genetic variations are also dictated by the effective population size. To examine this, we obtained whole genome data from over 100 populations of the world and investigated the patterns of mutational changes. Our results revealed that for low frequency variants, the ratio of AT→GC to GC→AT variants (β) was similar across populations, suggesting the similarity of the pattern of mutation in various populations. However, for high frequency variants, β showed a positive correlation with the effective population size of the populations. This suggests a much higher proportion of high frequency AT→GC variants in large populations (e.g. Africans) compared to those with small population sizes (e.g. Asians). These results imply that the substitution patterns vary significantly between populations. These findings could be explained by the effect of GC-biased gene conversion (gBGC), which favors the fixation of G/C over A/T variants in populations. In large population, gBGC causes high β. However, in small populations, genetic drift reduces the effect of gBGC resulting in reduced β. This was further confirmed by a positive relationship between Ne and β for homozygous variants. Our results highlight the huge variation in the types of homozygous and high frequency polymorphisms between world populations. We observed the same pattern for deleterious variants, implying that the homozygous polymorphisms associated with recessive genetic diseases will be more enriched with G or C in populations with large Ne (e.g. Africans) than in populations with small Ne (e.g. Europeans).

  • Evolution and expression of genes encoding TCP transcription factors in Solanum tuberosum reveal the involvement of StTCP23 in plant defence
    BMC Genet. (IF 2.547) Pub Date : 2019-12-04
    Sarina Bao; Zhenxin Zhang; Qun Lian; Qinghua Sun; Ruofang Zhang

    The plant-specific Teosinte branched1/Cycloidea/Proliferating cell factor (TCP) family of transcription factors is involved in the regulation of cell growth and proliferation, performing diverse functions in plant growth and development. In addition, TCP transcription factors have recently been shown to be targets of pathogenic effectors and are likely to play a vital role in plant immunity. No comprehensive analysis of the TCP family members in potato (Solanum tuberosum L.) has been undertaken, however, and whether their functions are conserved in potato remains unknown. To assess TCP gene evolution in potato, we identified TCP-like genes in several publicly available databases. A total of 23 non-redundant TCP transcription factor-encoding genes were identified in the potato genome and subsequently subjected to a systematic analysis that included determination of their phylogenetic relationships, gene structures and expression profiles in different potato tissues under basal conditions and after hormone treatments. These assays also confirmed the function of the class I TCP StTCP23 in the regulation of plant growth and defence. This is the first genome-wide study including a systematic analysis of the StTCP gene family in potato. Identification of the possible functions of StTCPs in potato growth and defence provides valuable information for our understanding of the classification and functions of the TCP genes in potato.

  • Comparative gene expression profiling of muscle reveals potential candidate genes affecting drip loss in pork
    BMC Genet. (IF 2.547) Pub Date : 2019-12-02
    Xueyan Zhao; Cheng Wang; Yanping Wang; Haichao Lin; Huaizhong Wang; Hongmei Hu; Jiying Wang

    Drip loss is a key aspect of meat quality. Transcriptome profiles of muscle with divergent drip loss would offer important insight into the genetic factors responsible for the trait. In this study, drip loss and other meat quality traits of 28 purebred Duroc pigs were measured, muscles of these individuals were RNA sequenced, and eight individuals with extremely low and high drip loss were selected for analyzing their transcriptome differences and identifying potential candidate genes affecting drip loss. As a result, 363 differentially expressed (DE) genes were detected in the comparative gene expression analysis, of which 239 were up-regulated and 124 were down-regulated in the low drip loss group. The DE genes were further filtered by correlation analysis between their expression and drip loss values in the 28 Duroc pigs measured and comparison of them with QTLs affecting drip loss. Consequently, of the 363 DE genes, 100 were identified as critical DE genes for drip loss. Functional analysis of these critical DE genes revealed some GO terms (extracellular matrix, cell adhesion mediated by integrin, heterotypic cell-cell adhesion), pathway (ECM-receptor interaction), and new potential candidate genes (TNC, ITGA5, ITGA11, THBS3 and CD44) which played an important role in regulating the variation of drip loss, and deserved to carry further studies to unravel their specific mechanism on drip loss. Our study revealed some GO terms, pathways and potential candidate genes affecting drip loss. It provides crucial information to understand the molecular mechanism of drip loss, and would be of help for improving meat quality of pigs.

  • Genome-wide identification, characterisation and functional evaluation of WRKY genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.) G. Don. under abiotic stresses
    BMC Genet. (IF 2.547) Pub Date : 2019-12-03
    Yuxia Li; Lei Zhang; Panpan Zhu; Qinghe Cao; Jian Sun; Zongyun Li; Tao Xu

    WRKY DNA-binding protein (WRKY) is a large gene family involved in plant responses and adaptation to salt, drought, cold and heat stresses. Sweet potato from the genus Ipomoea is a staple food crop, but the WRKY genes in Ipomoea species remain unknown to date. Hence, we carried out a genome-wide analysis of WRKYs in Ipomoea trifida (H.B.K.) G. Don., the wild ancestor of sweet potato. A total of 83 WRKY genes encoding 96 proteins were identified in I. trifida, and their gene distribution, duplication, structure, phylogeny and expression patterns were studied. ItfWRKYs were distributed on 15 chromosomes of I. trifida. Gene duplication analysis showed that segmental duplication played an important role in the WRKY gene family expansion in I. trifida. Gene structure analysis showed that the intron-exon model of the ItfWRKY gene was highly conserved. Meanwhile, the ItfWRKYs were divided into five groups (I, IIa + IIb, IIc, IId + IIe and III) on the basis of the phylogenetic analysis on I. trifida and Arabidopsis thaliana WRKY proteins. In addition, gene expression profiles confirmed by quantitative polymerase chain reaction showed that ItfWRKYs were highly up-regulated or down-regulated under salt, drought, cold and heat stress conditions, implying that these genes play important roles in response and adaptation to abiotic stresses. In summary, genome-wide identification, gene structure, phylogeny and expression analysis of WRKY gene in I. trifida provide basic information for further functional studies of ItfWRKYs and for the molecular breeding of sweet potato.

  • Transcriptome, physiological and biochemical analysis of Triarrhena sacchariflora in response to flooding stress
    BMC Genet. (IF 2.547) Pub Date : 2019-11-29
    Jia Wang; Han Sun; Jiajin Sheng; Surong Jin; Fasong Zhou; Zhongli Hu; Ying Diao

    In recent decades, the frequency of flooding is increasing with the change of global climate. Flooding has become one of the major abiotic stresses that seriously affect growth and development of plants. Triarrhena sacchariflora Nakai has been considered a promising energy crop for utilization in ethanol production. Flooding stress is among the most severe abiotic stressors in the production of Nakai. However, the physiological and molecular biological mechanisms of Nakai response to flooding is still unclear. In the present study, in order to understand the molecular mechanisms of Nakai in response to flooding stress, the transcriptome, physiological and biochemical were investigated. The results demonstrated that significant physiological changes were observed in photosynthetic system, antioxidative enzyme activity, chlorophyll, carotenoid, proline, lipid peroxidation and soluble sugar content under normal and flooding treatments. Such as, the chlorophyll, carotenoid contents and photosynthetic system were significantly decreased. Whereas, the antioxidative enzyme activity, proline, lipid peroxidation and soluble sugar has increased first and then decreased under treatments compared with the normal plants. Additionally, a total of 8832, 6608 and 3649 unigenes were validated to be differentially expressed under different treatments, respectively. Besides, gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the different expression levels of genes also presented processes, which involved in photosynthesis, sucrose catabolism, glycolysis, stress response and defense, phytohormone biosynthesis and signal transduction. The results provide a comprehensive view of the complex molecular events involved in the response to flooding stress of Nakai leaves, which also will promote the research in the development of flood-resistant crops and provide new tools for Nakai breeders.

  • Rapid genomic DNA variation in newly hybridized carp lineages derived from Cyprinus carpio (♀) × Megalobrama amblycephala (♂)
    BMC Genet. (IF 2.547) Pub Date : 2019-11-28
    Kaikun Luo; Shi Wang; Yeqing Fu; Pei Zhou; Xuexue Huang; Qianhong Gu; Wuhui Li; Yude Wang; Fangzhou Hu; Shaojun Liu

    Distant hybridization can generate changes in phenotypes and genotypes that lead to the formation of new hybrid lineages with genetic variation. In this study, the establishment of two bisexual fertile carp lineages, including the improved diploid common carp (IDC) lineage and the improved diploid scattered mirror carp (IDMC) lineage, from the interspecific hybridization of common carp (Cyprinus carpio, 2n = 100) (♀) × blunt snout bream (Megalobrama amblycephala, 2n = 48) (♂), provided a good platform to investigate the genetic relationship between the parents and their hybrid progenies. In this study, we investigated the genetic variation of 12 Hox genes in the two types of improved carp lineages derived from common carp (♀) × blunt snout bream (♂). Hox gene clusters were abundant in the first generation of IDC, but most were not stably inherited in the second generation. In contrast, we did not find obvious mutations in Hox genes in the first generation of IDMC, and almost all the Hox gene clusters were stably inherited from the first generation to the second generation of IDMC. Interestingly, we found obvious recombinant clusters of Hox genes in both improved carp lineages, and partially recombinant clusters of Hox genes were stably inherited from the first generation to the second generation in both types of improved carp lineages. On the other hand, some Hox genes were gradually becoming pseudogenes, and some genes were completely pseudogenised in IDC or IDMC. Our results provided important evidence that distant hybridization produces rapid genomic DNA changes that may or may not be stably inherited, providing novel insights into the function of hybridization in the establishment of improved lineages used as new fish resources for aquaculture.

  • Karyotypic and mtDNA based characterization of Malaysian water buffalo
    BMC Genet. (IF 2.547) Pub Date : 2019-03-25
    Nor ‘ Ammar Liyana Shaari; Marilyn Jaoi-Edward; Shu San Loo; Mohd Shahrom Salisi; Rosnina Yusoff; Nurul Izza Ab Ghani; Mohd Zamri Saad; Hafandi Ahmad

    In Malaysia, the domestic water buffaloes (Bubalus bubalis) are classified into the swamp and the murrah buffaloes. Identification of these buffaloes is usually made via their phenotypic appearances. This study characterizes the subspecies of water buffaloes using karyotype, molecular and phylogenetic analyses. Blood of 105 buffaloes, phenotypically identified as swamp, murrah and crossbred buffaloes were cultured, terminated and harvested using conventional karyotype protocol to determine the number of chromosomes. Then, the D-loop of mitochondrial DNA of 10 swamp, 6 crossbred and 4 murrah buffaloes which were identified earlier by karyotyping were used to construct a phylogenetic tree was constructed. Karyotypic analysis confirmed that all 93 animals phenotypically identified as swamp buffaloes with 48 chromosomes, all 7 as crossbreds with 49 chromosomes, and all 5 as murrah buffaloes with 50 chromosomes. The D-loop of mitochondrial DNA analysis showed that 10 haplotypes were observed with haplotype diversity of 0.8000 ± 0.089. Sequence characterization revealed 72 variables sites in which 67 were parsimony informative sites with sequence diversity of 0.01906. The swamp and murrah buffaloes clearly formed 2 different clades in the phylogenetic tree, indicating clear maternal divergence from each other. The crossbreds were grouped within the swamp buffalo clade, indicating the dominant maternal swamp buffalo gene in the crossbreds. Thus, the karyotyping could be used to differentiate the water buffaloes while genotypic analysis could be used to characterize the water buffaloes and their crossbreds.

  • Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces
    BMC Genet. (IF 2.547) Pub Date : 2019-03-26
    Fangjie Yao; Xuemei Zhang; Xueling Ye; Jian Li; Li Long; Can Yu; Jing Li; Yuqi Wang; Yu Wu; Jirui Wang; Qiantao Jiang; Wei Li; Jian Ma; Yuming Wei; Youliang Zheng; Guoyue Chen

    Stripe rust is a serious fungal disease of wheat (Triticum aestivum L.) caused by Puccinia striiformis f. sp. tritici (Pst), which results in yield reduction and decreased grain quality. Breeding for genetic resistance to stripe rust is the most cost-effective method to control the disease. In the present study, a genome-wide association study (GWAS) was conducted to identify markers linked to stripe rust resistance genes (or loci) in 93 Northern Chinese wheat landraces, using Diversity Arrays Technology (DArT) and simple sequence repeat (SSR) molecular marker technology based on phenotypic data from two field locations over two growing seasons in China. Seventeen accessions were verified to display stable and high levels of adult plant resistance (APR) to stripe rust via multi-environment field assessments. Significant correlations among environments and high heritability were observed for stripe rust infection type (IT) and disease severity (DS). Using mixed linear models (MLM) for the GWAS, a total of 32 significantly associated loci (P < 0.001) were detected. In combination with the linkage disequilibrium (LD) decay distance (6.4 cM), 25 quantitative trait loci (QTL) were identified. Based on the integrated map of previously reported genes and QTL, six QTL located on chromosomes 4A, 6A and 7D were mapped far from resistance regions identified previously, and represent potentially novel stripe rust resistance loci at the adult plant stage. The present findings demonstrated that identification of genes or loci linked to significant markers in wheat by GWAS is feasible. Seventeen elite accessions conferred with stable and high resistance to stripe rust, and six putative newly detected APR loci were identified among the 93 Northern Chinese wheat landraces. The results illustrate the potential for acceleration of molecular breeding of wheat, and also provide novel sources of stripe rust resistance with potential utility in the breeding of improved wheat cultivars.

  • Genome-wide association study of four yield-related traits at the R6 stage in soybean
    BMC Genet. (IF 2.547) Pub Date : 2019-03-29
    Xiangnan Li; Xiaoli Zhang; Longming Zhu; Yuanpeng Bu; Xinfang Wang; Xing Zhang; Yang Zhou; Xiaoting Wang; Na Guo; Lijuan Qiu; Jinming Zhao; Han Xing

    The 100-pod fresh weight (PFW), 100-seed fresh weight (SFW), 100-seed dry weight (SDW) and moisture content of fresh seeds (MCFS) at the R6 stage are crucial factors for vegetable soybean yield. However, the genetic basis of yield at the R6 stage remains largely ambiguous in soybean. To better understand the molecular mechanism underlying yield, we investigated four yield-related traits of 133 soybean landraces in two consecutive years and conducted a genome-wide association study (GWAS) using 82,187 single nucleotide polymorphisms (SNPs). The GWAS results revealed a total of 14, 15, 63 and 48 SNPs for PFW, SFW, SDW and MCFS, respectively. Among these markers, 35 SNPs were repeatedly identified in all evaluated environments (2015, 2016, and the average across the two years), and most co-localized with yield-related QTLs identified in previous studies. AX-90496773 and AX-90460290 were large-effect markers for PFW and MCFS, respectively. The two markers were stably identified in all environments and tagged to linkage disequilibrium (LD) blocks. Six potential candidate genes were predicted in LD blocks; five of them showed significantly different expression levels between the extreme materials with large PFW or MCFS variation at the seed development stage. Therefore, the five genes Glyma.16g018200, Glyma.16g018300, Glyma.05g243400, Glyma.05g244100 and Glyma.05g245300 were regarded as candidate genes associated with PFW and MCFS. These results provide useful information for the development of functional markers and exploration of candidate genes in vegetable soybean high-yield breeding programs.

  • An integrative U method for joint analysis of multi-level omic data
    BMC Genet. (IF 2.547) Pub Date : 2019-04-10
    Pei Geng; Xiaoran Tong; Qing Lu

    The advance of high-throughput technologies has made it cost-effective to collect diverse types of omic data in large-scale clinical and biological studies. While the collection of the vast amounts of multi-level omic data from these studies provides a great opportunity for genetic research, the high dimensionality of omic data and complex relationships among multi-level omic data bring tremendous analytic challenges. To address these challenges, we develop an integrative U (IU) method for the design and analysis of multi-level omic data. While non-parametric methods make less model assumptions and are flexible for analyzing different types of phenotypes and omic data, they have been less developed for association analysis of omic data. The IU method is a nonparametric method that can accommodate various types of omic and phenotype data, and consider interactive relationship among different levels of omic data. Through simulations and a real data application, we compare the IU test with commonly used variance component tests. Results show that the proposed test attains more robust type I error performance and higher empirical power than variance component tests under various types of phenotypes and different underlying interaction effects.

  • Genome-wide identification, structural and gene expression analysis of the bZIP transcription factor family in sweet potato wild relative Ipomoea trifida
    BMC Genet. (IF 2.547) Pub Date : 2019-04-25
    Zhengmei Yang; Jian Sun; Yao Chen; Panpan Zhu; Lei Zhang; Shaoyuan Wu; Daifu Ma; Qinghe Cao; Zongyun Li; Tao Xu

    The basic leucine zipper (bZIP) transcription factor is one of the most abundant and conserved transcription factor families. In addition to being involved in growth and development, bZIP transcription factors also play an important role in plant adaption to abiotic stresses. A total of 41 bZIP genes that encode 66 proteins were identified in Ipomoea trifida. They were distributed on 14 chromosomes of Ipomoea trifida. Segmental and tandem duplication analysis showed that segmental duplication played an important role in the ItfbZIP gene amplification. ItfbZIPs were divided into ten groups (A, B, C, D, E, F, G, H, I and S groups) according to their phylogenetic relationships with Solanum lycopersicum and Arabidopsis thaliana. The regularity of the exon/intron numbers and distributions is consistent with the group classification in evolutionary tree. Prediction of the cis-acting elements found that promoter regions of ItfbZIPs harbored several stress responsive cis-acting elements. Protein three-dimensional structural analysis indicated that ItfbZIP proteins mainly consisted of α-helices and random coils. The gene expression pattern from transcriptome data and qRT-PCR analysis showed that ItfbZIP genes expressed with a tissue-specific manner and differently expressed under various abiotic stresses, suggesting that the ItfbZIPs were involved in stress response and adaption in Ipomoea trifida. Genome-wide identification, gene structure, phylogeny and expression analysis of bZIP gene in Ipomoea trifida supplied a solid theoretical foundation for the functional study of bZIP gene family and further facilitated the molecular breeding of sweet potato.

  • Molecular markers based on sequence variation in BoFLC1.C9 for characterizing early- and late-flowering cabbage genotypes
    BMC Genet. (IF 2.547) Pub Date : 2019-04-27
    Md. Abuyusuf; Ujjal Kumar Nath; Hoy-Taek Kim; Md. Rafiqul Islam; Jong-In Park; Ill-Sup Nou

    Cabbage (Brassica oleracea var. capitata) is popular worldwide for consumption as a leafy vegetable. Premature flowering is triggered by low temperature, and deteriorates quality of cabbage as vegetable. In general, growers prefer late-flowering varieties to assure good quality compact head. Here, we report BoFLC1.C9 as a gene with clear sequence variation between cabbage lines with different flowering times, and proposed as molecular marker to characterize early- and late-flowering cabbage lines. We identified sequence variation of 67 bp insertions in intron 2, which were contributed in flowering time variation between two inbred lines through rapid down-regulation of the BoFLC1.C9 gene in early-flowering line compared to late-flowering one upon vernalization. One set of primer ‘F7R7’ proposed as marker, of which was explained with 83 and 80% of flowering time variation in 141 F2 individuals and 20 commercial lines, respectively. This F7R7 marker could be used as genetic tools to characterize flowering time variation and to select as well to develop early- and late-flowering cabbage cultivars.

  • Joint analyses of multi-tissue Hi-C and eQTL data demonstrate close spatial proximity between eQTLs and their target genes
    BMC Genet. (IF 2.547) Pub Date : 2019-04-30
    Jingting Yu; Ming Hu; Chun Li

    Gene regulation is important for cells and tissues to function. It has been studied from two aspects at the genomic level, the identification of expression quantitative trait loci (eQTLs) and identification of long-range chromatin interactions. It is important to understand their relationship, such as whether eQTLs regulate their target genes through physical chromatin interaction. Although chromatin interactions have been widely believed to be one of the main mechanisms underlying eQTLs, most evidence came from studies of cell lines and yet no direct evidence exists for tissues. We performed various joint analyses of eQTL and high-throughput chromatin conformation capture (Hi-C) data from 11 human primary tissue types and 2 human cell lines. We found that chromatin interaction frequency is positively associated with the number of genes that have eQTLs and that eQTLs and their target genes tend to fall into the same topologically associating domain (TAD). These results are consistent across all tissues and cell lines we evaluated. Moreover, in 6 out of 11 tissues (aorta, dorsolateral prefrontal cortex, hippocampus, pancreas, small bowel, and spleen), tissue-specific eQTLs are significantly enriched in tissue-specific frequently interacting regions (FIREs). Our data have demonstrated the close spatial proximity between eQTLs and their target genes among multiple human primary tissues.

  • The influence of vgll3 genotypes on sea age at maturity is altered in farmed mowi strain Atlantic salmon
    BMC Genet. (IF 2.547) Pub Date : 2019-05-06
    Fernando Ayllon; Monica F. Solberg; Kevin A. Glover; Faezeh Mohammadi; Erik Kjærner-Semb; Per Gunnar Fjelldal; Eva Andersson; Tom Hansen; Rolf B. Edvardsen; Anna Wargelius

    In Atlantic salmon in the wild, age at maturity is strongly influenced by the vgll3 locus. Under farming conditions, light, temperature and feeding regimes are known significantly advance or delay age at maturity. However, the potential influence of the vgll3 locus on the maturation of salmon reared under farming conditions has been rarely investigated, especially in females. Here, we reared domesticated salmon (mowi strain) with different vgll3 genotypes under standard farming conditions until they matured at either one, two or more than two sea winters. Interestingly, and in contrast to previous findings in the wild, we were not able to identify a link between vgll3 and age at maturity in females when reared under farming conditions. For males however, we found that the probability of delaying maturation from one to two sea winters was significantly lower in fish homozygous for the early allele compared to homozygous fish for the late allele, while the probability for heterozygous fish was intermediate. These data also contrast to previous findings in the wild where the early allele has been reported as dominant. However, we found that the probability of males delaying maturation from two to three sea winters was regulated in the same manner as the wild. Collectively, our data suggest that increased growth rates in mowi salmon, caused by high feed intake and artificial light and temperature regimes together with other possible genetic/epigenetic components, may significantly influence the impact that the vgll3 locus has on age at maturity, especially in females. In turn, our results show that the vgll3 locus can only to a large extent be used in selective breeding to control age at maturation in mowi males. In summary, we here show that in contrast to the situation in wild salmon, under farming conditions vgll3 does not seem to influence age at maturity in mowi females whereas in mowi males, maturing as one or two sea winters it alters the early allele effect from dominant to intermediate.

  • Gene expression profiles that shape high and low oil content sesames
    BMC Genet. (IF 2.547) Pub Date : 2019-05-16
    Linhai Wang; Yanxin Zhang; Donghua Li; Komivi Dossa; Ming Li Wang; Rong Zhou; Jingyin Yu; Xiurong Zhang

    Sesame (Sesamum indicum) can accumulate over 60% oil in its seed. However, low oil content genotypes with an oil content of less than 50% are also observed. To gain insights into how genes shape this variation, we examined 22 seed and carpel transcriptomes from 3 varieties of sesame with high and low oil content. A total of 34.6~52.2% of the sesame genes were expressed with a RPKM greater than 5 in the 22 tissue samples. The expressed gene numbers tended to decrease in the seed but fluctuated in the carpels from 10 to 30 days post-anthesis (DPA). Compared with that of the low oil content sesames, the high oil content sesame exhibited more positive gene expression during seed development. Typically, genes involved in lipid biosynthesis were enriched and could distinguish the high and low genotypes at 30 DPA, suggesting the pivotal role of seed oil biosynthesis in the later stages. Key homologous lipid genes that function in TAG biosynthesis, including those that encoded glycerol-3-phosphate acyltransferase (GPAT), acyl-CoA:diacylglycerol acyltransferase (DGAT), and phospholipid:diacylglycerol acyltransferase (PDAT), were strengthened asynchronously at different stages, but the lipid transfer protein (LTP)-encoding genes, including SIN_1019175, SIN_1019172 and SIN_1010009, usually were highlighted in the high oil content sesames. Furthermore, a list of 23 candidate genes was identified and predicted to be beneficial for higher oil content accumulation. Despite the different gene expression patterns between the seeds and carpels, the two tissues showed a cooperative relationship during seed development, and biological processes, such as transport, catabolic process and small molecule metabolic process, changed synchronously. The study elucidated the different expression profiles in high and low oil content sesames and revealed key stages and a list of candidate genes that shaped oil content variation. These findings will accelerate dissection of the genetic mechanism of sesame oil biosynthesis.

  • In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins
    BMC Genet. (IF 2.547) Pub Date : 2019-05-16
    Qiang Jiang; Han Zhao; Rongling Li; Yaran Zhang; Yong Liu; Jinpeng Wang; Xiuge Wang; Zhihua Ju; Wenhao Liu; Minghai Hou; Jinming Huang

    Single-nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) and their target binding sites affect miRNA function and are involved in biological processes and diseases, including bovine mastitis, a frequent inflammatory disease. Our previous study has shown that bta-miR-2899 is significantly upregulated in the mammary gland tissue of mastitis-infected cow than that of healthy cows. In the present study, we used a customized miRNAQTLsnp software and identified 5252 SNPs in 691 bovine pre-miRNAs, which are also located within the quantitative trait loci (QTLs) that are associated with mastitis and udder conformation-related traits. Using luciferase assay in the bovine mammary epithelial cells, we confirmed a candidate SNP (rs109462250, g. 42,198,087 G > A) in the seed region of bta-miR-2899 located in the somatic cell score (SCS)-related QTL (Chr.18: 33.9–43.9 Mbp), which affected the interaction of bta-miR-2899 and its putative target Spi-1 proto-oncogene (SPI1), a pivotal regulator in the innate and adaptive immune systems. Quantitative real-time polymerase chain reaction results showed that the relative expression of SPI1 in the mammary gland of AA genotype cows was significantly higher than that of GG genotype cows. The SNP genotypes were associated with SCS in Holstein cows. Altogether, miRNA-related SNPs, which influence the susceptibility to mastitis, are one of the plausible mechanisms underlying mastitis via modulating the interaction of miRNAs and immune-related genes. These miRNA-QTL-SNPs, such as the SNP (rs109462250) of bta-miR-2899 may have implication for the mastitis resistance breeding program in Holstein cattle.

  • Identification and mapping of expressed genes associated with the 2DL QTL for fusarium head blight resistance in the wheat line Wuhan 1
    BMC Genet. (IF 2.547) Pub Date : 2019-05-21
    Xinkun Hu; Hélène Rocheleau; Curt McCartney; Chiara Biselli; Paolo Bagnaresi; Margaret Balcerzak; George Fedak; Zehong Yan; Giampiero Valè; Shahrokh Khanizadeh; Thérèse Ouellet

    Fusarium head blight (FHB) is a problem of great concern in small grain cereals, especially wheat. A quantitative trait locus (QTL) for FHB resistance (FHB_SFI) located on the long arm of chromosome 2D in the spring wheat genotype Wuhan 1 is a resistance locus which has potential to improve the FHB resistance of bread wheat since it confers effective resistance to wheat breeding lines. Recently, differentially expressed genes (DEG) have been identified by comparing near isogenic lines (NIL) carrying the susceptible and resistant alleles for the 2DL QTL, using RNA-Seq. In the present study, we aimed to identify candidate genes located within the genetic interval for the 2DL QTL for FHB resistance, as assessed by single floret inoculation (FHB_SFI), and possibly contributing to it. Combining previous and additional bioinformatics analyses, 26 DEG that were located on chromosome arm 2DL were selected for further characterization of their expression profile by RT-qPCR. Seven of those DEG showed a consistent differential expression profile between either three pairs of near isogenic lines or other genotypes carrying the R and S alleles for the 2DL QTL for FHB resistance. UN25696, which was identified in previous expression work using microarray was also confirmed to have a differential expression pattern. Those eight candidate genes were further characterized in 85 lines of a double haploid mapping population derived from the cross Wuhan 1/Nyubai, the population where the 2DL QTL was originally identified. The expression QTL for gene Traes_2DL_179570792 overlapped completely with the mapping interval for the 2DL QTL for FHB_SFI while the expression QTL for UN25696 mapped near the QTL, but did not overlap with it. None of the other genes had a significant eQTL on chromosome 2DL. Higher expression of Traes_2DL_179570792 and UN25696 was associated with the resistant allele at that locus. Of the 26 DEG from the 2DL chromosome further characterized in this study, only two had an expression QTL located in or near the interval for the 2DL QTL. Traes_2DL_179570792 is the first expression marker identified as associated with the 2DL QTL.

  • Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population
    BMC Genet. (IF 2.547) Pub Date : 2019-05-28
    Jianping Jiang; Lin Liu; Yahui Gao; Lijun Shi; Yanhua Li; Weijun Liang; Dongxiao Sun

    We have previously identified 11 promising candidate genes for milk composition traits by resequencing the whole genomes of 8 Holstein bulls with extremely high and low estimated breeding values for milk protein and fat percentages (high and low groups), including FCGR2B, CENPE, RETSAT, ACSBG2, NFKB2, TBC1D1, NLK, MAP3K1, SLC30A2, ANGPT1 and UGDH those contained 25 indels between high and low groups. In this study, the purpose was to further examine whether these candidates have significant genetic effects on milk protein and fat traits. With PCR product sequencing, 13 indels identified by whole genome resequencing were successfully genotyped. With association analysis in 769 Chinese Holstein cows, we found that the indel in FCGR2B was significantly associated with milk yield, protein yield and protein percentage (P = 0.0041 to 0.0297); five indels in CENPE and one indel in MAP3K1 were markedly relevant to milk yield, fat yield and protein yield (P < 0.0001 to 0.0073); polymorphism in RETSAT was evidently associated with milk yield, fat yield, protein yield and protein percentage (P = 0.0001 to 0.0237); variant in ACSBG2 affected fat yield and protein percentage (P = 0.0088 and 0.0052); one indel in TBC1D1 was with respect to fat percentage and protein percentage (P = 0.0224 and 0.0209). Significant associations were shown between indels in NLK and protein yield and protein percentage (P = 0.0012 to 0.0257); variant in UGDH was related to the milk yield (P = 0.0312). The two exonic indels in FCGR2B and CENPE were predicted to change the mRNA and protein secondary structures, and resulted in the corresponding protein dysfunction. Our findings presented here provide the first evidence for the associations of eight functional genes with milk yield and composition traits in dairy cattle.

  • Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus)
    BMC Genet. (IF 2.547) Pub Date : 2019-06-06
    William L. Miller; Jessie Edson; Peter Pietrandrea; Cassandra Miller-Butterworth; W. David Walter

    Microsatellite loci have been used extensively over the past two decades to study the genetic characteristics of non-model species. The ease of microsatellite development and ability to adapt markers from related species has led to the proliferation of available markers for many commonly studied species. Because it is often infeasible to genotype individuals across all available loci, researchers generally rely on subsets of markers. Marker choice can bias inferences made using disparate suites of loci. This has been a primary motivation for efforts to identify uniform marker panels. Here, we use the geographic distribution of previous studies to identify microsatellite loci for white-tailed deer (Odocoileus virginianus) with the potential for widespread use, and we evaluate the effectiveness of this panel in a portion of the range where few previous studies have been conducted. The purpose was to consolidate the numerous genetic resources for this species into a manageable panel and to provide a uniform methodology that improves comparisons between past and future studies. We reviewed microsatellite panels from 58 previous or ongoing projects and identified 106 candidate loci. We developed a multiplex protocol and evaluated the efficacy of 17 of the most commonly used loci using 720 DNA samples collected from the Mid-Atlantic region of the United States of America. Amplification errors were detected in six of these loci. The 11 remaining loci were highly polymorphic, exhibited low frequencies of null alleles, and were easy to interpret with the aid of allele binning software. The development of broadly-applicable, core microsatellite panels has the potential to improve repeatability and comparative ability for commonly studied species. The properties of the consolidated 11 microsatellite panel suggest that they are applicable for many common research objectives for white-tailed deer. The geographic distribution of previous studies using these markers provides a greater degree of confidence regarding the robustness to common sources of error related to amplification anomalies, such as null alleles, relative to loci with more limited use. While this does not replace further evaluation of genotyping errors, it does provide a common platform that benefits future research studies.

  • The genome profiling method can be applied for species identification of biological materials collected at crime scenes
    BMC Genet. (IF 2.547) Pub Date : 2019-06-10
    Takako Kinebuchi; Nozomi Idota; Hajime Tsuboi; Marin Takaso; Risa Bando; Hiroshi Ikegaya

    Various biological materials unrelated to humans are found at crime scenes and it is often important to elucidate the origin of these materials. A genetic locus common to several species is conventionally PCR-amplified with universal primers to identify species. However, not all species can be identified using a single locus. In this study, DNA from 13 commonly handled taxa was analyzed to identify species by a genome profiling (GP) method, which involves random PCR and temperature gradient gel electrophoresis. In a clustering analysis, we successfully obtained a single cluster for each species. The GP method is cost-effective and does not require advanced techniques and knowledge in molecular biology. The random sampling of the whole genome using multiple primers provides substantial genomic information. Therefore, the method is effective for classifying a wide range of species, including animals, plants, and insects, and is useful for crime scene investigations.

  • Estimation of the genetic parameters for semen traits in Chinese Holstein bulls
    BMC Genet. (IF 2.547) Pub Date : 2019-06-10
    Hongwei Yin; Lingzhao Fang; Chunhua Qin; Shengli Zhang

    Semen traits are important for the widespread use of superior bulls. Thus, the objective of this study was to estimate the heritability of five semen traits, ejaculate volume (VE), progressive sperm motility (SM), sperm concentration (SC), number of sperm (NSP), and number of progressive motile sperm (NMSP), and their genetic correlations (rg). The dataset being studied consisted of 1450 Chinese Holstein bulls with full pedigree information, born between 1996 and 2012, representing 11 AI centers. Genetic parameters were estimated in a multivariate analysis using the average information restricted maximum likelihood estimation of variance (AI-REML). The estimates of heritability for VE, SM, SC, NSP, and NMSP were 0.15, 0.12, 0.22, 0.16 and 0.12, respectively. The genetic correlations among the five semen traits ranged from 0.02 (VE and SC) to 0.99 (NSP and NMSP). Our findings provide useful information on the heritability of semen traits in Holstein bulls and the relationships among them, and should assist in selection for improvement of semen traits in Chinese Holstein bulls.

  • Genome-wide analysis indicates association between heterozygote advantage and healthy aging in humans
    BMC Genet. (IF 2.547) Pub Date : 2019-07-02
    Ke Xu; Roman Kosoy; Khader Shameer; Sudhir Kumar; Li Liu; Ben Readhead; Gillian M. Belbin; Hao-Chih Lee; Rong Chen; Joel T. Dudley

    Genetic diversity is known to confer survival advantage in many species across the tree of life. Here, we hypothesize that such pattern applies to humans as well and could be a result of higher fitness in individuals with higher genomic heterozygosity. We use healthy aging as a proxy for better health and fitness, and observe greater heterozygosity in healthy-aged individuals. Specifically, we find that only common genetic variants show significantly higher excess of heterozygosity in the healthy-aged cohort. Lack of difference in heterozygosity for low-frequency variants or disease-associated variants excludes the possibility of compensation for deleterious recessive alleles as a mechanism. In addition, coding SNPs with the highest excess of heterozygosity in the healthy-aged cohort are enriched in genes involved in extracellular matrix and glycoproteins, a group of genes known to be under long-term balancing selection. We also find that individual heterozygosity rate is a significant predictor of electronic health record (EHR)-based estimates of 10-year survival probability in men but not in women, accounting for several factors including age and ethnicity. Our results demonstrate that the genomic heterozygosity is associated with human healthspan, and that the relationship between higher heterozygosity and healthy aging could be explained by heterozygote advantage. Further characterization of this relationship will have important implications in aging-associated disease risk prediction.

  • A post-GWAS confirming effects of PRKG1 gene on milk fatty acids in a Chinese Holstein dairy population
    BMC Genet. (IF 2.547) Pub Date : 2019-07-03
    Lijun Shi; Xiaoqing Lv; Lin Liu; Yuze Yang; Zhu Ma; Bo Han; Dongxiao Sun

    We previously conducted a genome-wide association study (GWAS) strategy for milk fatty acids in Chinese Holstein, and identified 83 genome-wide significant single nucleotide polymorphisms (SNPs) and 314 suggestive significant SNPs. Among them, two SNPs, BTB-01077939 and BTA-11275-no-rs associated with C10:0, C12:0, and C14 index (P = 0.000014 ~ 0.000024), were within and close to (0.85 Mb) protein kinase, cGMP-dependent, type І (PRKG1) gene on BTA26, respectively. PRKG1 gene plays a key role in lipolysis to release fatty acids and glycerol through the hydrolysis of triacyglycerol in adipocytes. We herein considered it as a promising candidate for milk fatty acids. The purpose of this study was to investigate whether PRKG1 had effects on milk fatty acids. By direct sequencing the PCR products of pooled DNA, we identified a total of six SNPs, including one in 5′ flanking region, four in 3′ untranslated region (UTR), and one in 3′ flanking region. The single-locus association analysis was carried out, and showed that the six SNPs mainly had significant associations with C6:0, C8:0 and C17:1 (P < 0.0001 ~ 0.0035). In addition, we observed a haplotype block formed by g.6903810G > A and g.6904047G > T with Haploview 4.1, and it was strongly associated with C8:0, C10:0, C16:1, C17:1, C20:0 and C16 index (P = < 0.0001 ~ 0.0123). The SNP, g.8344262A > T, was predicted to alter the binding site (BS) of transcription factor (TF) GAGA box with Genomatix software, and the subsequent luciferase assay verified that it really changed the transcriptional activity of PRKG1 gene (P = 0.0009). In conclusion, to our best of knowledge, we are the first who identified the significant effects of PRKG1 on milk fatty acids in dairy cattle.

  • Hepatic transcriptome profile of sheep (Ovis aries) in response to overgrazing: novel genes and pathways revealed
    BMC Genet. (IF 2.547) Pub Date : 2019-07-04
    Weibo Ren; Warwick Badgery; Yong Ding; Huiqin Guo; Yang Gao; Jize Zhang

    Overgrazing is a major factor that causes steppe degradation in Inner Mongolian, resulting in extensive ecosystem damage. Scarcity of grass means sheep are smaller and therefore mutton and cashmere production is greatly reduced, which has resulted in massive annual economic losses. Liver is the primary metabolic organ in mammals. It is also the key source of energy supply and detoxification of metabolites in animals, has a close relationship with animal growth. However, investigations on the responses of sheep induced by consequence of overgrazing, particularly those relating to liver-related molecular mechanisms and related metabolic pathways, remain elusive. The body weight daily gain of sheep, immune organ indices (liver and spleen), and serum parameters related to immune response, protein synthesis and energy supply (IgG, albumin, glucose and non-esterified fatty acid) were significantly lower in the overgrazing group. Other serum parameters including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total bilirubin, blood urea nitrogen and interleukin-6 were significantly higher in the overgrazing group. For the RNA-Seq results, we identified approximately 50 differentially expressed genes, of which half of were up-regulated and the other half were down-regulated (overgrazing group versus light grazing group). Bioinformatics analysis identified two enriched KEGG pathways including peroxisome proliferator-activated receptor (PPAR) signaling pathway (related to lipolysis) and ECM-receptor interaction (related to liver injury and apoptosis). Additionally, several of the down-regulated genes were related to detoxification and immune response. Overall, based on the high-throughput RNA sequencing profile integrated with the results of serum biochemical analyses, consequences of lower forage availability and quality under overgrazing condition induced altered expression levels of genes participating in energy metabolism (particularly lipid metabolism) and detoxification and immune responses, causing lipolysis and impaired health status, which might be key reasons for the reduced growth performance of sheep. This investigation provides a novel foundation for the development of sheep hepatic gene interactive networks that are a response to the degraded forage availability under overgrazing condition.

  • Comparative transcriptome analysis of two reproductive modes in Adiantum reniforme var. sinense targeted to explore possible mechanism of apogamy
    BMC Genet. (IF 2.547) Pub Date : 2019-07-09
    Qi Fu; Long-qing Chen

    Apogamy is a unique asexual reproduction in the ferns, in which somatic cells of gametophytes go through dedifferentiation and then differentiate into haploid sporophytes bypassing fertilization. Restricted to the lack of genomic information, molecular mechanisms of apogamy have remained unclear. Comparative transcriptome analysis was conducted at six stages between sexual reproduction and apogamy in the fern Adiantum reniforme var. sinense, in an effort to identify genes and pathways that might initiate the asexual reproduction. Approximately 928 million high-quality clean reads were assembled into 264,791 unigenes with an average length of 615 bp. A total of 147,865 (55.84%) unigenes were successfully annotated. Differential genes expression analysis indicated that transcriptional regulation was more active in the early stage of apogamy compared to sexual reproduction. Further comparative analysis of the enriched pathways between the early stages of the two reproductive modes demonstrated that starch and sucrose metabolism pathway responsible for cell wall was only significantly enriched in asexual embryonic cell initiation. Furthermore, regulation of plant hormone related genes was more vigorous in apogamy initiation. These findings would be useful for revealing the initiation of apogamy and further understanding of the mechanisms related to asexual reproduction.

  • Genetic diversity of Bm86 sequences in Rhipicephalus (Boophilus) microplus ticks from Mexico: analysis of haplotype distribution patterns
    BMC Genet. (IF 2.547) Pub Date : 2019-07-12
    S. G. Martínez-Arzate; J. C. Sánchez-Bermúdez; S. Sotelo-Gómez; H. M. Diaz-Albiter; W. Hegazy-Hassan; E. Tenorio-Borroto; A. Barbabosa-Pliego; J. C. Vázquez-Chagoyán

    Ticks are a problem for cattle production mainly in tropical and subtropical regions, because they generate great economic losses. Acaricides and vaccines have been used to try to keep tick populations under control. This has been proven difficult given the resistance to acaricides and vaccines observed in ticks. Resistance to protein rBm86-based vaccines has been associated with the genetic diversity of Bm86 among the ectoparasite’s populations. So far, neither genetic diversity, nor spatial distribution of circulating Bm86 haplotypes, have been studied within the Mexican territory. Here, we explored the genetic diversity of 125 Bm86 cDNA gene sequences from R. microplus from 10 endemic areas of Mexico by analyzing haplotype distribution patterns to help in understanding the population genetic structure of Mexican ticks. Our results showed an average nucleotide identity among the Mexican isolates of 98.3%, ranging from 91.1 to 100%. Divergence between the Mexican and Yeerongpilly (the Bm86 reference vaccine antigen) sequences ranged from 3.1 to 7.4%. Based on the geographic distribution of Bm86 haplotypes in Mexico, our results suggest gene flow occurrence within different regions of the Mexican territory, and even the USA. The polymorphism of Bm86 found in the populations included in this study, could account for the poor efficacy of the current Bm86 antigen based commercial vaccine in many regions of Mexico. Our data may contribute towards designing new, highly-specific, Bm86 antigen vaccine candidates against R. microplus circulating in Mexico.

  • Genome-wide association analysis for β-hydroxybutyrate concentration in Milk in Holstein dairy cattle
    BMC Genet. (IF 2.547) Pub Date : 2019-07-16
    S. Nayeri; F. Schenkel; A. Fleming; V. Kroezen; M. Sargolzaei; C. Baes; A. Cánovas; J. Squires; F. Miglior

    Ketosis in dairy cattle has been shown to cause a high morbidity in the farm and substantial financial losses to dairy farmers. Ketosis symptoms, however, are difficult to identify, therefore, the amount of ketone bodies (mainly β-hydroxybutyric acid, BHB) is used as an indicator of subclinical ketosis in cows. It has also been shown that milk BHB concentrations have a strong correlation with ketosis in dairy cattle. Mid-infrared spectroscopy (MIR) has recently became a fast, cheap and high-throughput method for analyzing milk components. The aim of this study was to perform a genome-wide association study (GWAS) on the MIR-predicted milk BHB to identify genomic regions, genes and pathways potentially affecting subclinical ketosis in North American Holstein dairy cattle. Several significant regions were identified associated with MIR-predicted milk BHB concentrations (indicator of subclinical ketosis) in the first lactation (SCK1) and second and later lactations (SCK2) in Holstein dairy cows. The strongest association was located on BTA6 for SCK1 and BTA14 on SCK2. Several SNPs on BTA6 were identified in regions and variants reported previously to be associated with susceptibility to ketosis and clinical mastitis in Jersey and Holstein dairy cattle, respectively. One highly significant SNP on BTA14 was found within the DGAT1 gene with known functions on fat metabolism and inflammatory response in dairy cattle. A region on BTA6 and three SNPs on BTA20 were found to overlap between SCK1 and SCK2. However, a novel region on BTA20 (55–63 Mb) for SCK2 was also identified, which was not reported in previous association studies. Enrichment analysis of the list of candidate genes within the identified regions for MIR-predicted milk BHB concentrations yielded molecular functions and biological processes that may be involved in the inflammatory response and lipid metabolism in dairy cattle. The results of this study confirmed several SNPs and genes identified in previous studies as associated with ketosis susceptibility and immune response, and also found a novel region that can be used for further analysis to identify causal variations and key regulatory genes that affect clinical/ subclinical ketosis.

  • Phasing quality assessment in a brown layer population through family- and population-based software
    BMC Genet. (IF 2.547) Pub Date : 2019-07-17
    N. Frioni; D. Cavero; H. Simianer; M. Erbe

    Haplotype data contains more information than genotype data and provides possibilities such as imputing low frequency variants, inferring points of recombination, detecting recurrent mutations, mapping linkage disequilibrium (LD), studying selection signatures, estimating IBD probabilities, etc. In addition, haplotype structure is used to assess genetic diversity and expected accuracy in genomic selection programs. Nevertheless, the quality and efficiency of phasing has rarely been a subject of thorough study but was assessed mainly as a by-product in imputation quality studies. Moreover, phasing studies based on data of a poultry population are non-existent. The aim of this study was to evaluate the phasing quality of FImpute and Beagle, two of the most used phasing software. We simulated ten replicated samples of a layer population comprising 888 individuals from a real SNP dataset of 580 k and a pedigree of 12 generations. Chromosomes analyzed were 1, 7 and 20. We measured the percentage of SNPs that were phased equally between true and phased haplotypes (Eqp), proportion of individuals completely correctly phased, number of incorrectly phased SNPs or Breakpoints (Bkp) and the length of inverted haplotype segments. Results were obtained for three different groups of individuals, with no parents or offspring genotyped in the dataset, with only one parent, and with both parents, respectively. The phasing was performed with Beagle (v3.3 and v4.1) and FImpute v2.2 (with and without pedigree). Eqp values ranged from 88 to 100%, with the best results from haplotypes phased with Beagle v4.1 and FImpute with pedigree information and at least one parent genotyped. FImpute haplotypes showed a higher number of Bkp than Beagle. As a consequence, switched haplotype segments were longer for Beagle than for FImpute. We concluded that for the dataset applied in this study Beagle v4.1 or FImpute with pedigree information and at least one parent genotyped in the data set were the best alternatives for obtaining high quality phased haplotypes.

  • Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations
    BMC Genet. (IF 2.547) Pub Date : 2019-07-17
    Frida Lona-Durazo; Natalia Hernandez-Pacheco; Shaohua Fan; Tongwu Zhang; Jiyeon Choi; Michael A. Kovacs; Stacie K. Loftus; Phuong Le; Melissa Edwards; Cesar A. Fortes-Lima; Celeste Eng; Scott Huntsman; Donglei Hu; Enrique Javier Gómez-Cabezas; Lilia Caridad Marín-Padrón; Jonas Grauholm; Ole Mors; Esteban G. Burchard; Heather L. Norton; William J. Pavan; Kevin M. Brown; Sarah Tishkoff; Maria Pino-Yanes; Sandra Beleza; Beatriz Marcheco-Teruel; Esteban J. Parra

    Association studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation. However, to date only four Genome-Wide Association Studies (GWAS) have been carried out in these populations. We present a GWAS of skin pigmentation in an admixed sample from Cuba (N = 762). Additionally, we conducted a meta-analysis including the Cuban sample, and admixed samples from Cape Verde, Puerto Rico and African-Americans from San Francisco. This meta-analysis is one of the largest efforts so far to characterize the genetic basis of skin pigmentation in admixed populations (N = 2,104). We identified five genome-wide significant regions in the meta-analysis, and explored if the markers observed in these regions are associated with the expression of relevant pigmentary genes in human melanocyte cultures. In three of the regions identified in the meta-analysis (SLC24A5, SLC45A2, and GRM5/TYR), the association seems to be driven by non-synonymous variants (rs1426654, rs16891982, and rs1042602, respectively). The rs16891982 polymorphism is strongly associated with the expression of the SLC45A2 gene. In the GRM5/TYR region, in addition to the rs1042602 non-synonymous SNP located on the TYR gene, variants located in the nearby GRM5 gene have an independent effect on pigmentation, possibly through regulation of gene expression of the TYR gene. We also replicated an association recently described near the MFSD12 gene on chromosome 19 (lead variant rs112332856). Additionally, our analyses support the presence of multiple signals in the OCA2/HERC2/APBA2 region on chromosome 15. A clear causal candidate is the HERC2 intronic variant rs12913832, which has a profound influence on OCA2 expression. This variant has pleiotropic effects on eye, hair, and skin pigmentation. However, conditional and haplotype-based analyses indicate the presence of other variants with independent effects on melanin levels in OCA2 and APBA2. Finally, a follow-up of genome-wide signals identified in a recent GWAS for tanning response indicates that there is a substantial overlap in the genetic factors influencing skin pigmentation and tanning response. Our meta-analysis of skin pigmentation GWAS in recently admixed populations provides new insights about the genetic architecture of this complex trait.

  • Rapid identification of inflorescence type markers by genotyping-by-sequencing of diploid and triploid F1 plants of Hydrangea macrophylla
    BMC Genet. (IF 2.547) Pub Date : 2019-07-23
    Conny Tränkner; Jörg Krüger; Stefan Wanke; Julia Naumann; Torsten Wenke; Frauke Engel

    The ornamental crop Hydrangea macrophylla develops highly attractive lacecap (wild type) or mophead inflorescences. The mophead trait, which is mostly favored by consumers, is recessively inherited by the INFLORESCENCE TYPE locus (INF). If lacecap cultivars are crossed with mophead cultivars, then either 50% or all progenies develop lacecap inflorescences, depending on the zygosity at the INF locus. For most cultivars, the zygosity at the INF locus is unknown. Furthermore, the determination of the inflorescence type in offspring populations is time-consuming, because seedlings flower the first time in the 2nd year after sowing. Within this study, we aimed to develop DNA-based markers that allow to determine the zygosity at the INF locus of prospective parental plants and to predict the inflorescence phenotype of seedlings already in the non-flowering stage. By crossing a mophead and a lacecap cultivar of H. macrophylla, we produced a pseudo-backcross F1 population consisting of 422 plants. These plants segregated into 279 lacecap, 73 mophead, 3 intermediate and 67 non-flowering plants, differing significantly from the expected 1:1 segregation ratio. Surprisingly, 75% of these plants were triploid, although both parents were diploid. We found that the lacecap parent produced unreduced pollen, which induced the formation of triploids. 380 randomly selected F1 plants were genotyped by genotyping-by-sequencing (GbS). Using a genome assembly of cultivar ‘Sir Joseph Banks’, we performed subsequently a bulk sequence analysis with pooled GbS data of diploid versus mophead plants. We identified directly 2 markers tightly linked with the INF locus, each of them explaining 99.7% of the inflorescence phenotype. Using a collection consisting of 56 diploid, triploid or tetraploid H. macrophylla varieties, we detected 6 sequence variants for one of these markers. Two variants were associated with the mophead phenotype. Furthermore, we found by marker analysis a co-segregation between the mophead and the non-flowering trait, which indicates a major flowering time locus next to the INF locus. Through bulk sequence analysis of pooled GbS data from diploid and polyploid F1 plants, we identify rapidly tightly linked markers for the inflorescence type, a dominant-recessively inherited trait in the non-model plant species H. macrophylla.

  • Functional characterization of Gh_A08G1120 (GH3.5) gene reveal their significant role in enhancing drought and salt stress tolerance in cotton
    BMC Genet. (IF 2.547) Pub Date : 2019-07-23
    Joy Nyangasi Kirungu; Richard Odongo Magwanga; Pu Lu; Xiaoyan Cai; Zhongli Zhou; Xingxing Wang; Renhai Peng; Kunbo Wang; Fang Liu

    Auxins play an important role in plant growth and development; the auxins responsive gene; auxin/indole-3-acetic acid (Aux/IAA), small auxin-up RNAs (SAUR) and Gretchen Hagen3 (GH3) control their mechanisms. The GH3 genes function in homeostasis by the catalytic activities in auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. In our study, we identified the GH3 genes in three cotton species; Gossypium hirsutum, Gossypium arboreum and Gossypium raimondii, analyzed their chromosomal distribution, phylogenetic relationships, cis-regulatory element function and performed virus induced gene silencing of the novel Gh_A08G1120 (GH3.5) gene. The phylogenetic tree showed four clusters of genes with clade 1, 3 and 4 having mainly members of the GH3 of the cotton species while clade 2 was mainly members belonging to Arabidopsis. There were no paralogous genes, and few orthologous genes were observed between Gossypium and other species. All the GO terms were detected, but only 14 genes were found to have described GO terms in upland cotton, more biological functions were detected, as compared to the other functions. The GH3.17 subfamily harbored the highest number of the cis-regulatory elements, most having promoters towards dehydration-responsiveness. The RNA expression analysis revealed that 10 and 8 genes in drought and salinity stress conditions respectively were upregulated in G. hirsutum. All the genes that were upregulated in plants under salt stress conditions were also upregulated in drought stress; moreover, Gh_A08G1120 (GH3.5) exhibited a significant upregulation across the two stress factors. Functional characterization of Gh_A08G1120 (GH3.5) through virus-induced gene silencing (VIGS) revealed that the VIGS plants ability to tolerate drought and salt stresses was significantly reduced compared to the wild types. The chlorophyll content, relative leaf water content (RLWC), and superoxide dismutase (SOD) concentration level were reduced significantly while malondialdehyde concentration and ion leakage as a measure of cell membrane stability (CMS) increased in VIGS plants under drought and salt stress conditions. This study revealed the significance of the GH3 genes in enabling the plant’s adaptation to drought and salt stress conditions as evidenced by the VIGS results and RT-qPCR analysis.

  • GWAS of habitual coffee consumption reveals a sex difference in the genetic effect of the 12q24 locus in the Japanese population
    BMC Genet. (IF 2.547) Pub Date : 2019-07-26
    Huijuan Jia; Shun Nogawa; Kaoru Kawafune; Tsuyoshi Hachiya; Shoko Takahashi; Maki Igarashi; Kenji Saito; Hisanori Kato

    Studies on genetic effects of coffee consumption are scarce for Asian populations. We conducted a genome-wide association study (GWAS) of habitual coffee consumption in Japan using a self-reporting online survey. Candidate genetic loci associated with habitual coffee consumption were searched within a discovery cohort (N = 6,264) and confirmed in a replication cohort (N = 5,975). Two loci achieved genome-wide significance (P < 5 × 10− 8) in a meta-analysis of the discovery and replication cohorts: an Asian population-specific 12q24 (rs79105258; P = 9.5 × 10− 15), which harbors CUX2, and 7p21 (rs10252701; P = 1.0 × 10− 14), in the upstream region of the aryl hydrocarbon receptor (AHR) gene, involved in caffeine metabolism. Subgroup analysis revealed a stronger genetic effect of the 12q24 locus in males (P for interaction = 8.2 × 10− 5). Further, rs79105258 at the 12q24 locus exerted pleiotropic effects on body mass index (P = 3.5 × 10− 4) and serum triglyceride levels (P = 8.7 × 10− 3). Our results consolidate the association of habitual coffee consumption with the 12q24 and 7p21 loci. The different effects of the 12q24 locus between males and females are a novel finding that improves our understanding of genetic influences on habitual coffee consumption.

  • Meta-analysis of the effects of overexpression of WRKY transcription factors on plant responses to drought stress
    BMC Genet. (IF 2.547) Pub Date : 2019-07-26
    Yuan Guo; Wenjing Ping; Jingtang Chen; Liying Zhu; Yongfeng Zhao; Jinjie Guo; Yaqun Huang

    The tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors play important roles in plants, allowing them to adapt to environmental conditions that are not normally conducive to plant growth; in particular, drought. There has been extensive research on WRKY transcription factors and the effects of their overexpression in plants on resistance to drought stress. However, due to the materials (the type and species of donor and receptor, promoters) and treatments (the type and time of stress) used, different and often confounding results have been obtained between studies. Meta-analysis is a powerful statistical tool that can be used to summarize results from numerous independent experiments on the same research topic while accounting for variability across experiments. We carried out a meta-analysis of 16 measured parameters that affect drought resistance in plants overexpressing WRKY transcription factors and wild-type plants. We found that only one of these parameters was significantly different between transgenic and wild-type plants under drought and control conditions at a 95% confidence interval (p = 0.000, p = 0.009, respectively). Eleven of the sixteen parameters were obviously different in WRKY transgenic plants under drought and control conditions (SV, p = 0.023, SSC, p = 0.000, SOD, p = 0.012, SFW, p = 0.000, RL, p = 0.016, Pro, p = 0.000, POD, p = 0.027, MDA, p = 0.000, H2O2, p = 0.003, EL, p = 0.000, CHC, p = 0.000, respectively), seven of the eleven obviously different parameters showed positive effect (SSC, SOD, Pro, POD, MDA, H2O2, EL), four of them revealed negative effect (SV, SFW, RL, CHC). We have found that only one of these parameters was significantly different between transgenic and wild-type plants under drought and control conditions respectively, at a 95% confidence interval. And eleven of sixteen parameters showed obviously different of WRKY-overexpressed plants under different conditions (water-stressed and normal), suggesting that WRKY transcription factors play an important role in plant responses to drought stress. These findings also provide a theoretical basis for further study of the role of WRKY transcription factors in the regulation of plant responses to environmental stress.

  • Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat
    BMC Genet. (IF 2.547) Pub Date : 2019-07-29
    Tobias Würschum; Matthias Rapp; Thomas Miedaner; C. Friedrich H. Longin; Willmar L. Leiser

    Heading time is an important adaptive trait in durum wheat. In hexaploid wheat, Photoperiod-1 (Ppd) loci are essential regulators of heading time, with Ppd-B1 conferring photoperiod insensitivity through copy number variations (CNV). In tetraploid wheat, the D-genome Ppd-D1 locus is absent and generally, our knowledge on the genetic architecture underlying heading time lacks behind that of bread wheat. In this study, we employed a panel of 328 diverse European durum genotypes that were evaluated for heading time at five environments. Genome-wide association mapping identified six putative QTL, with a major QTL on chromosome 2B explaining 26.2% of the genotypic variance. This QTL was shown to correspond to copy number variation at Ppd-B1, for which two copy number variants appear to be present. The higher copy number confers earlier heading and was more frequent in the heat and drought prone countries of lower latitude. In addition, two other QTL, corresponding to Vrn-B3 (TaFT) and Ppd-A1, were found to explain 9.5 and 5.3% of the genotypic variance, respectively. Our results revealed the yet unknown role of copy number variation of Ppd-B1 as the major source underlying the variation in heading time in European durum wheat. The observed geographic patterns underline the adaptive value of this polymorphism and suggest that it is already used in durum breeding to tailor cultivars to specific target environments. In a broader context our findings provide further support for a more widespread role of copy number variation in mediating abiotic and biotic stress tolerance in plants.

  • Identification and characterization of cherry (Cerasus pseudocerasus G. Don) genes responding to parthenocarpy induced by GA3 through transcriptome analysis
    BMC Genet. (IF 2.547) Pub Date : 2019-08-01
    Binbin Wen; Wenliang Song; Mingyue Sun; Min Chen; Qin Mu; Xinhao Zhang; Qijie Wu; Xiude Chen; Dongsheng Gao; Hongyu Wu

    Fruit set after successful pollination is key for the production of sweet cherries, and a low fruit-setting rate is the main problem in production of this crop. As gibberellin treatment can directly induce parthenogenesis and satisfy the hormone requirement during fruit growth and development, such treatment is an important strategy for improving the fruit-setting rate of sweet cherries. Previous studies have mainly focused on physiological aspects, such as fruit quality, fruit size, and anatomical structure, whereas the molecular mechanism remains clear. In this study, we analyzed the transcriptome of ‘Meizao’ sweet cherry fruit treated with gibberellin during the anthesis and hard-core periods to identify genes associated with parthenocarpic fruit set. A total of 25,341 genes were identified at the anthesis and hard-core stages, 765 (681 upregulated, 84 downregulated) and 186 (141 upregulated, 45 downregulated) of which were significant differentially expressed genes (DEGs) at the anthesis and the hard-core stages after gibberellin 3 (GA3) treatment, respectively. Based on DEGs between the control and GA3 treatments, the GA3 response mainly involves parthenocarpic fruit set and cell division. Exogenous gibberellin stimulated sweet cherry fruit parthenocarpy and enlargement, as verified by qRT-PCR results of related genes as well as the parthenocarpic fruit set and fruit size. Based on our research and previous studies in Arabidopsis thaliana, we identified key genes associated with parthenocarpic fruit set and cell division. Interestingly, we observed patterns among sweet cherry fruit setting-related DEGs, especially those associated with hormone balance, cytoskeleton formation and cell wall modification. Overall, the result provides a possible molecular mechanism regulating parthenocarpic fruit set that will be important for basic research and industrial development of sweet cherries.

  • Genetic diversity and population structure of the Sapsaree, a native Korean dog breed
    BMC Genet. (IF 2.547) Pub Date : 2019-08-05
    Chandima Gajaweera; Ji Min Kang; Doo Ho Lee; Soo Hyun Lee; Yeong Kuk Kim; Hasini I. Wijayananda; Jong Joo Kim; Ji Hong Ha; Bong Hwan Choi; Seung Hwan Lee

    The Sapsaree is a breed of dog (Canis familiaris) native to Korea, which became perilously close to extinction in the mid-1980s. However, with systematic genetic conservation and restoration efforts, this breed was rescued from extinction and population sizes have been gradually increasing over the past few decades. The aim of this study was to ascertain novel information about the genetic diversity, population structure, and demographic history of the Sapsaree breed using genome-wide single nucleotide polymorphism data. We characterized the genetic profile of the Sapsaree breed by comparison with seven foreign dog breeds with similar morphologies to estimate genetic differentiation within and among these breeds. The results suggest that Sapsarees have higher genetic variance compared with the other breeds analyzed. The majority of the Sapsarees in this study share a discrete genetic pattern, although some individuals were slightly different, possibly as a consequence of the recent restoration process. Concordant results from analyses of linkage disequilibrium, effective population size, genetic diversity, and population structural analyses illustrate a relationship among the Sapsaree and the Tibetan breeds Tibetan terrier and Lhasa Apso, and a small genetic introgression from European breeds. The effective population size of the Sapsaree has contracted dramatically over the past generations, and is currently insufficient to maintain long-term viability of the breed’s genetic diversity. This study provides novel insights regarding the genetic diversity and population structure of the native Korean dog breed Sapsaree. Our results suggest the importance of a strategic and systematic approach to ensure the genetic diversity and the authenticity of the Sapsaree breed.

  • Genome-wide association analysis of egg production performance in chickens across the whole laying period
    BMC Genet. (IF 2.547) Pub Date : 2019-08-14
    Zhuang Liu; Ning Yang; Yiyuan Yan; Guangqi Li; Aiqiao Liu; Guiqin Wu; Congjiao Sun

    Egg production is the most economically-important trait in layers as it directly influences benefits of the poultry industry. To better understand the genetic architecture of egg production, we measured traits including age at first egg (AFE), weekly egg number (EN) from onset of laying eggs to 80 weeks which was divided into five stage (EN1: from onset of laying eggs to 23 weeks, EN2: from 23 to 37 weeks, EN3: from 37 to 50 weeks, EN4: from 50 to 61 weeks, EN5: from 61 to 80 weeks) based on egg production curve and total egg number across the whole laying period (Total-EN). Then we performed genome-wide association studies (GWAS) in 1078 Rhode Island Red hens using a linear mixed model. Estimates of pedigree and SNP-based genetic parameter showed that AFE and EN1 exhibited high heritability (0.51 ± 0.09, 0.53 ± 0.08), while the h2 for EN in other stages varied from low (0.07 ± 0.04) to moderate (0.24 ± 0.07) magnitude. Subsequently, seven univariate GWAS for AFE and ENs were carried out independently, from which a total of 161 candidate SNPs located on GGA1, GGA2, GGA5, GGA6, GGA9 and GGA24 were identified. Thirteen SNP located on GGA6 were associated with AFE and an interesting gene PRLHR that may affect AFE through regulating oxytocin secretion in chickens. Sixteen genome-wide significant SNPs associated with EN3 were in a strong linkage disequilibrium (LD) region spanning from 117.87 Mb to 118.36 Mb on GGA1 and the most significant SNP (rs315777735) accounted for 3.57% of phenotypic variance. Genes POLA1, PDK3, PRDX4 and APOO identified by annotating sixteen genome-wide significant SNPs can be considered as candidates associated with EN3. Unfortunately, our study did not find any candidate gene for the total egg number. Findings in our study could provide promising genes and SNP markers to improve egg production performance based on marker-assisted breeding selection, while further functional validation is still needed in other populations.

  • The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop
    BMC Genet. (IF 2.547) Pub Date : 2019-08-14
    Muhammad Munir Iqbal; Mark Huynh; Joshua A. Udall; Andrzej Kilian; Kedar N. Adhikari; Jens D. Berger; William Erskine; Matthew N. Nelson

    Yellow lupin (Lupinus luteus L.) is a promising grain legume for productive and sustainable crop rotations. It has the advantages of high tolerance to soil acidity and excellent seed quality, but its current yield potential is poor, especially in low rainfall environments. Key adaptation traits such as phenology and enhanced stress tolerance are often complex and controlled by several genes. Genomic-enabled technologies may help to improve our basic understanding of these traits and to provide selective markers in breeding. However, in yellow lupin there are very limited genomic resources to support research and no published information is available on the genetic control of adaptation traits. We aimed to address these deficiencies by developing the first linkage map for yellow lupin and conducting quantitative trait locus (QTL) analysis of yield under well-watered (WW) and water-deficit (WT) conditions. Two next-generation sequencing marker approaches - genotyping-by-sequencing (GBS) and Diversity Array Technology (DArT) sequencing - were employed to genotype a recombinant inbred line (RIL) population developed from a bi-parental cross between wild and domesticated parents. A total of 2,458 filtered single nucleotide polymorphism (SNP) and presence / absence variation (PAV) markers were used to develop a genetic map comprising 40 linkage groups, the first reported for this species. A number of significant QTLs controlling total biomass and 100-seed weight under two water (WW and WD) regimes were found on linkage groups YL-03, YL-09 and YL-26 that together explained 9 and 28% of total phenotypic variability. QTLs associated with length of the reproductive phase and time to flower were found on YL-01, YL-21, YL-35 and YL-40 that together explained a total of 12 and 44% of total phenotypic variation. These genomic resources and the QTL information offer significant potential for use in marker-assisted selection in yellow lupin.

  • Polymorphisms and genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk fatty acid traits in Chinese Holstein
    BMC Genet. (IF 2.547) Pub Date : 2019-08-16
    Lijun Shi; Lin Liu; Xiaoqing Lv; Zhu Ma; Yuze Yang; Yanhua Li; Feng Zhao; Dongxiao Sun; Bo Han

    Our initial genome-wide association study (GWAS) identified 20 promising candidate genes for milk fatty acid (FA) traits in a Chinese Holstein population, including PRLR, MOGAT1, MINPP1 and CHUK genes. In this study, we performed whether they had significant genetic effects on milk FA traits in Chinese Holstein. We re-sequenced the entire exons and 3000 bp of the 5′ and 3′ flanking regions, and identified 11 single nucleotide polymorphisms (SNPs), containing four in PRLR, two in MOGAT1, two in MINPP1, and three in CHUK. The SNP-based association analyses showed that all the 11 SNPs were significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001), and none of them had association with C11:0, C13:0, C15:0 and C16:0 (P > 0.05). By the linkage disequilibrium (LD) analyses, we found two, one, one, and one haplotype blocks in PRLR, MOGAT1, MINPP1, and CHUK, respectively, and each haplotype block was significantly associated with at least one milk FA trait (P = 0.0456 ~ < 0.0001). Further, g.38949011G > A in PRLR, and g.111599360A > G and g.111601747 T > A in MOGAT1 were predicted to alter the transcription factor binding sites (TFBSs). A missense mutation, g.39115344G > A, could change the PRLR protein structure. The g.20966385C > G of CHUK varied the binding sequences for microRNAs. Therefore, we deduced the five SNPs as the potential functional mutations. In summary, we first detected the genetic effects of PRLR, MOGAT1, MINPP1 and CHUK genes on milk FA traits, and researched the potential functional mutations. These data provided the basis for further investigation on function validation of the four genes in Chinese Holstein.

  • Preliminary study on microR-148a and microR-10a in dermal papilla cells of Hu sheep
    BMC Genet. (IF 2.547) Pub Date : 2019-08-27
    Xiaoyang Lv; Wen Gao; Chengyan Jin; Lihong Wang; Yue Wang; Weihao Chen; Shuangxia Zou; Sainan Huang; Zhifeng Li; Jinyu Wang; Wei Sun

    Hu sheep, a unique Chinese breed with high reproductive performance, are also well known for their rare white lambskin in China. The quality of lambskin is affected by hair follicles, and dermal papilla cells are an important component of hair follicles that plays a key role in hair follicle growth and development. This study helps elucidate the effect of miR-148a and miR-10a on hair follicle growth and development. Based on the results of gene chip and high-throughput sequencing, bone morphogenetic protein 7 (BMP7) was used as a research object. Bioinformatics analysis and the dual-luciferase reporter system indicated that, along with Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) that miR-148a and miR-10a target relationships with BMP7. BMP7 was the target gene both for miR-148a and miR-10a by the dual-luciferase reporter system and Western blot. Hu sheep dermal papilla cells were successfully isolated and purified, and after transfecting miR-148a/miR-10a mimics and inhibitors into dermal papilla cells, a Cell Counting Kit-8 (CCK-8) was used to determine that miR-148a/miR-10a inhibited the proliferation of Hu sheep dermal papilla cells. In addition, after the overexpression of miR-148a, the expression levels of Smad3 (P < 0.05), Smad6 (P < 0.05), Smad4 (P < 0.01), and Smad5 (P < 0.01) were significantly higher than those of the control groups. After the inhibition of miR-148a, the expression levels of Smad3 (P < 0.05), Smad4 (P < 0.05), and TGF-β (P < 0.01) were significantly lower than those of the control groups. After the overexpression of miR-10a, the expression levels of Smad1 (P < 0.01), Smad2 (P < 0.05), Smad4 (P < 0.01), Smad5 (P < 0.01), and TGF-β (P < 0.05) were significantly lower than those of the control groups. After the inhibition of miR-10a, the expression levels of Smad1 (P < 0.01) and Smad2 (P < 0.05) were significantly lower than those of the control groups. These results revealed the target relationship between miR-148a, miR-10a and BMP7, and the effect of miR-148a and miR-10a on the proliferation of dermal papilla cells. They will provide the basis for a follow-up study on how miR-148a, and miR-10a mediate BMP7 regulation of hair follicle growth and development.

  • Bos taurus–indicus hybridization correlates with intralocus sexual-conflict effects of PRDM9 on male and female fertility in Holstein cattle
    BMC Genet. (IF 2.547) Pub Date : 2019-08-28
    Eyal Seroussi; Andrey Shirak; Moran Gershoni; Ephraim Ezra; Daniel Jordan de Abreu Santos; Li Ma; George E. Liu

    Crossover localization during meiotic recombination is mediated by the fast-evolving zinc-finger (ZnF) domain of gene PRDM9. To study its impact on dairy cattle performance, we compared its genetic variation between the relatively small Israeli (IL) Holsteins and the North American (US) Holsteins that count millions. Initially, we analyzed the major BTA1 haplotypes present in IL Holsteins based on the 10 most telomeric SNPs of the BovineSNP50 BeadChip. Sequencing of representative haplotype carriers indicated that for all frequent haplotypes (> 6%), the variable PRDM9 ZnF array consisted of seven tandem ZnF repeats. Two rare haplotypes (frequency < 4%) carried an indicine PRDM9, whereas all others were variants of the taurine type. These two haplotypes included the minor SNP allele, which was perfectly linked with a previously described PRDM9 allele known to induce unique localization of recombination hotspots. One of them had a significant (p = 0.03) negative effect on IL sire fertility. This haplotype combined the rare minor alleles of the only SNPs with significant (p < 0.05) negative substitution effects on US sire fertility (SCR). Analysis of telomeric SNPs indicated general agreement of allele frequencies (R = 0.95) and of the substitution effects on sire fertility (SCR, R = 0.6) between the US and IL samples. Surprisingly, the alleles that had a negative impact on male fertility had the most positive substitution effects on female fertility traits (DPR, CCR and HCR). A negative genetic correlation between male and female fertility is encoded within the BTA1 telomere. Cloning the taurine PRDM9 gene, which is the common form carried by Holsteins, we encountered the infiltration of an indicine PRDM9 variant into this population. During meiosis, in heterozygous males, the indicine PRDM9 variant may induce incompatibility of recombination hotspots and male infertility. However, this variant is associated with favorable female fertility, which would explain its survival and the general negative correlation (R = − 0.3) observed between male and female fertility in US Holsteins. Further research is needed to explain the mechanism underlying this positive effect and to devise a methodology to unlink it from the negative effect on male fertility during breeding.

Contents have been reproduced by permission of the publishers.
上海纽约大学William Glover