当前期刊: European Journal of Cell Biology Go to current issue    加入关注   
显示样式:        排序: 导出
我的关注
我的收藏
您暂时未登录!
登录
  • Adipose tissue-derived stromal cells retain immunosuppressive and angiogenic activity after coculture with cord blood hematopoietic precursors
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2020-01-14
    Elena Andreeva; Irina Andrianova; Polina Bobyleva; Aleksandra Gornostaeva; Maria Ezdakova; Ekaterina Golikova; Ludmila Buravkova

    Adipose-tissue derived stromal cells (ASCs) are currently considered as a full value alternative source of bone marrow MSCs for prevention of graft-versus-host disease (GVHD) after hematopoietic stem-cell transplantation due to their immunosuppressive potential. Besides, ASCs are known to support ex vivo expansion of hematopoietic stem and progenitor cells (HSPCs). Ex vivo expansion enables to amplify significantly the number of HSPCs of different commitment. Mononuclear cells (MNCs) from cord blood (cb) contain HSPCs and are easily assessed. The rarity of those HSPCs is a serious limitation of its application in cell therapy. Here we expanded cbMNCs in stroma-dependent setting to generate heterocellular associates consisting of ASCs and undifferentiated and low committed hematopoietic cbHSPCs. A part of cbHSPCs in associates demonstrated a primitive phenotype confirmed by formation of “cobblestone areas". ASCs associated with cbHSPCs demonstrated up-regulation of immunosuppressive indoleamine 2,3-dioxygenase (IDO), leukemia inhibitory factor (LIF), cyclooxygenase-2 (PTGS2) genes. ASCs-cbHSPCs as well as ASCs provoked the suppression of HLA-DR activation and apoptosis of mitogen-stimulated T cells. VEGF transcription and secretion were elevated providing stimulation of blood vessel formation in ovo. Thus, ASCs retain immunosuppressive and proangiogenic capacities evidencing “third party” potential along with the effective support of ex vivo expansion of cbHSPCs. Above functions expand the relevance of ASCs for needs of regenerative medicine.

    更新日期:2020-01-14
  • Cells deficient for Krüppel-Like Factor 4 exhibit mitochondrial dysfunction and impaired mitophagy
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-12-05
    William M. Rosencrans, Zachary H. Walsh, Nadia Houerbi, Andrew Blum, Mezmur Belew, Changchang Liu, Brian Chernak, Philip R. Brauer, Angel Trazo, Anna Olson, Engda Hagos

    Krüppel-like factor 4 (Human Protein: KLF4; Human Gene: Klf4; Murine Protein: KLF4; Murine Gene: Klf4) is a zinc finger-containing transcription factor with diverse regulatory functions. Mouse embryonic fibroblasts (MEFs) lacking Klf4 exhibit genomic instability, increased reactive oxygen species (ROS), and decreased autophagy. Elevated ROS is linked to impairments in mitochondrial damage recovery responses and is often tied to disruption in mitochondrial-targeted autophagy known as mitophagy. In this study, we sought to identify a mechanistic connection between KLF4 and mitophagy. Using flow cytometry, we found that Klf4-null MEFs have diminished ability to recover mitochondrial health and regulate ROS levels after mitochondrial damage. Confocal microscopy indicated decreased localization of autophagy protein LC3 to mitochondria following mitochondrial damage in Klf4-null cells, suggesting decreased mitophagy. Western blotting and RT-PCR revealed decreased mRNA and protein expression of the mitophagy-associated protein Bnip3 and antioxidant protein GSTα4 in Klf4-null cells, providing a rationale for their impaired mitophagy and ROS accumulation. Inducing Bnip3 expression in these cells recovered mitophagy but did not decrease ROS accumulation. Our findings suggest that in Klf4-null cells, decreased Bnip3 expression impairs mitophagy and is associated with increased mitochondrial ROS production after mitochondrial damage, providing a rationale for their genomic instability and supports a tumor suppressive role for KLF4 in certain tumors as previously observed.

    更新日期:2019-12-05
  • The induction of host cell autophagy triggers defense mechanisms against Trypanosoma cruzi infection in vitro
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-11-22
    Thabata L.A. Duque, Mariana S. Siqueira, Leonardo H. Travassos, Otacílio C. Moreira, Patrícia T. Bozza, Rossana C.N. Melo, Andrea Henriques-Pons, Rubem F.S. Menna-Barreto
    更新日期:2019-11-22
  • Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-04-14
    Shobha Regmi, Shiva Pathak, Jong Oh Kim, Chul Soon Yong, Jee-Heon Jeong
    更新日期:2019-11-18
  • Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-11-18
    Paul Dowling, Margit Zweyer, Maren Raucamp, Michael Henry, Paula Meleady, Dieter Swandulla, Kay Ohlendieck

    The X-linked inherited muscle wasting disease Duchenne muscular dystrophy, which is caused by primary abnormalities in the membrane cytoskeletal protein dystrophin, is a multi-system disorder. Highly progressive forms of dystrophinopathy are associated with a complex secondary pathophysiology, including renal dysfunction. It was therefore of interest to carry out a systematic survey of potential proteome-wide changes in the kidney of the established mdx-4cv mouse model of dystrophinopathy. Of 5,878 mass spectrometrically identified kidney proteins, 82 versus 142 proteins were shown to be decreased or increased, respectively, in association with muscular dystrophy. The most decreased versus increased protein species are the ACSM3 isoform of mitochondrial acyl-coenzyme A synthetase and the FABP1 isoform of fatty acid binding protein, respectively. Both proteomic findings were verified by immunofluorescence microscopy and immunoblot analysis. Interestingly, haematoxylin/eosin staining indicated diffuse whitish deposits in the mdx-4cv kidney, and an increased intensity of Sudan Black labelling of kidney cells revealed ectopic fat deposition. Although the proteomic results and cell biological findings do not demonstrate a direct functional link between increased FABP1 and fat accumulation, the results suggest that the up-regulation of FABP1 may be related to abnormal fat metabolism. This makes FABP1 potentially a novel pathobiochemical indicator for studying kidney abnormalities in the mdx-4cv model of dystrophinopathy.

    更新日期:2019-11-18
  • MANF deletion abrogates early larval Caenorhabditis elegans stress response to tunicamycin and Pseudomonas aeruginosa
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-05-21
    Jessica H. Hartman, Christopher T. Richie, Kacy L. Gordon, Danielle F. Mello, Priscila Castillo, April Zhu, Yun Wang, Barry J. Hoffer, David R. Sherwood, Joel N. Meyer, Brandon K. Harvey

    Mesencephalic astrocyte-derived neurotrophic factor (MANF) is the only human neurotrophic factor with an evolutionarily-conserved C. elegans homolog, Y54G2A.23 or manf-1. MANF is a small, soluble, endoplasmic-reticulum (ER)-resident protein that is secreted upon ER stress and promotes survival of target cells such as neurons. However, the role of MANF in ER stress and its mechanism of cellular protection are not clear and the function of MANF in C. elegans is only beginning to emerge. In this study, we show that depletion of C. elegans manf-1 causes a slight decrease in lifespan and brood size; furthermore, combined depletion of manf-1 and the IRE-1/XBP-1 ER stress/UPR pathway resulted in sterile animals that did not produce viable progeny. We demonstrate upregulation of markers of ER stress in L1 larval nematodes, as measured by hsp-3 and hsp-4 transcription, upon depletion of manf-1 by RNAi or mutation; however, there was no difference in tunicamycin-induced expression of hsp-3 and hsp-4 between wild-type and MANF-deficient worms. Surprisingly, larval growth arrest observed in wild-type nematodes reared on tunicamycin is completely prevented in the manf-1 (tm3603) mutant. Transcriptional microarray analysis revealed that manf-1 mutant L1 larvae exhibit a novel modulation of innate immunity genes in response to tunicamycin. The hypothesis that manf-1 negatively regulates the innate immunity pathway is supported by our finding that the development of manf-1 mutant larvae compared to wild-type larvae is not inhibited by growth on P. aeruginosa. Together, our data represent the first characterization of C. elegans MANF as a key modulator of organismal ER stress and immunity.

    更新日期:2019-11-18
  • Mitochondria Regulation in Ferroptosis
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-11-15
    Hai Wang, Can Liu, Yongxin Zhao, Ge Gao

    Ferroptosis is recognized as a new form of regulated cell death which is initiated by severe lipid peroxidation relying on reactive oxygen species (ROS) generation and iron overload. This iron-dependent cell death manifests evident morphological, biochemical and genetic differences from other forms of regulated cell death, such as apoptosis, autophagy, necrosis and pyroptosis. Ferroptosis was primarily characterized by condensed mitochondrial membrane densities and smaller volume than normal mitochondria, as well as the diminished or vanished of mitochondria crista and outer membrane ruptured. Mitochondria take the center role in iron metabolism, as well as substance and energy metabolism as it’s the major organelle in iron utilization, catabolic and anabolic pathways. Interference of key regulators of mitochondrial lipid metabolism (e.g., ASCF2 and CS), iron homeostasis (e.g., ferritin, mitoferrin1/2 and NEET proteins), glutamine metabolism and other signaling pathways make a difference to ferroptotic sensitivity. Targeted induction of ferroptosis was also considered as a potential therapeutic strategy to some oxidative stress diseases, including neurodegenerative disorders, ischemia-reperfusion injury, traumatic spinal cord injury. However, the pertinence between mitochondria and ferroptosis is still in dispute. Here we systematic elucidate the morphological characteristics and metabolic regulation of mitochondria in the regulation of ferroptosis.

    更新日期:2019-11-15
  • Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2019-11-15
    Behrooz Moosavi, Xiao-lei Zhu, Wen-Chao Yang, Guang-Fu Yang

    Succinate dehydrogenase (SDH), also named as complex II or succinate:quinone oxidoreductases (SQR) is a critical enzyme in bioenergetics and metabolism. This is because the enzyme is located at the intersection of oxidative phosphorylation and tricarboxylic acid cycle (TCA); the two major pathways involved in generating energy within cells. SDH is composed of 4 subunits and is assembled through a multi-step process with the aid of assembly factors. Not surprisingly malfunction of this enzyme has marked repercussions in metabolism leading to devastating tumors such as paraganglioma and pheochromocytoma. It is already known that mutations in the genes encoding subunits lead to tumorigenesis, but recent discoveries have indicated that mutations in the genes encoding the assembly factors also contribute to tumorigenesis. The mechanisms of pathogenesis of tumorigenesis have not been fully understood. However, a multitude of signaling pathways including succinate signaling was determined. We, here discuss how defective SDH may lead to tumor development at the molecular level and describe how yeast, as a model system, has contributed to understanding the molecular pathogenesis of tumorigenesis resulting from defective SDH.

    更新日期:2019-11-15
  • GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2016-01-21
    Zilin Li,Liang Cheng,Hongliang Liang,Weixun Duan,Jing Hu,Weiwei Zhi,Jinbao Yang,Zhenhua Liu,Minggao Zhao,Jincheng Liu

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation.

    更新日期:2019-11-01
  • Differential chemoattractant response in adipocytes and macrophages to the action of acylation stimulating protein.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2012-12-19
    Fun-Qun Tom,Danny Gauvreau,Marc Lapointe,HuiLing Lu,Pegah Poursharifi,Xiao-Ping Luo,Katherine Cianflone

    Obesity is characterized by chronic low-grade inflammation with increased adipose tissue pro-inflammatory cytokine production. Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. Circulating ASP is increased in obesity, insulin resistance and metabolic syndrome. The present study examines the effects of normal (50 nM), high physiological (200 nM) and pathological (600 nM) levels of ASP on inflammatory changes in 3T3-L1 adipocytes and J774 macrophages and the underlying mechanisms involved. Treatment with ASP for 24h increased monocyte chemoattractant protein-1 (MCP1, 800%, P<0.001) and keratinocyte-derived chemokine (KC, >150%, P<0.01) secretion in adipocytes in a dose-dependent manner, with no effect on IL-6 or adiponectin. In macrophages, ASP had no effect on these cytokines. C5a, a ligand for C5L2 and C5aR receptors, differed from ASP. Macrophage-adipocyte coculture increased MCP-1 and adiponectin secretion, and ASP further enhanced secretion (P<0.001 and P<0.05, respectively) at doses of 50 nM and 200 nM. ASP increased Ser(468) and Ser(536) phosphorylation of p65 NFκB in a time- and concentration-dependent manner (P<0.05) as well as phosphorylation of Akt Ser(473) (p=0.02). ASP and insulin stimulations of Ser(536) p65 NFκB phosphorylation were comparable (both p<0.05) but not additive. Both inhibition of PI3kinase (with wortmannin) and NFκB (with BAY11-7085) prevented ASP stimulation of MCP-1 and KC secretion in adipocytes. These findings suggest that ASP, especially at high physiologic doses, may stimulate specific inflammatory cytokines in adipocytes through PI3kinase- and NFκB-dependant pathways, thus further promoting macrophage infiltration and local inflammation in obese adipose tissue.

    更新日期:2019-11-01
  • The long-term culture of pig liver sinusoidal endothelial cells: the Holy Grail found.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-10-13
    Filip Braet,Eddie Wisse,Irmelin Probst

    更新日期:2019-11-01
  • 更新日期:2019-11-01
  • TuJ1 (class III beta-tubulin) expression suggests dynamic redistribution of follicular dendritic cells in lymphoid tissue.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-04-12
    Seungkoo Lee,Kyungho Choi,Hanjong Ahn,Kyuyoung Song,Jongseon Choe,Inchul Lee

    Follicular dendritic cells (FDCs) play central roles in the B cell survival, proliferation, and differentiation into memory cells. Here, we show that TuJ1 (class III beta-tubulin) is expressed strongly in FDCs of human lymphoid tissue. TuJ1 has been a marker of neurons in the central and peripheral nervous systems from the early stage of neural differentiation. FDCs expressed TuJ1 protein diffusely in both light and dark zones of germinal centers in all human lymphoid tissues. In contrast, CD21 expression was relatively concentrated to the light zone, suggesting that TuJ1 was a marker for FDCs with broader spectrum than CD21. In addition to the germinal center, there were single TuJ1-expressing cells scattered in the mantle zone, blurring the border of the FDC network. In human tonsils, single scattered TuJ1-positive cells were also present in the crypt epithelium, suggesting a dynamic redistribution of FDCs among the antigen-rich epithelium, mantle zone, and germinal center. Such migration of FDCs could reflect a way of direct transport of various antigens carried on their surface to the germinal center, and a basis for the polarity of lymphoid follicles toward the epithelium in mucosa-associated lymphoid tissues. HK cells, cultured FDCs, also expressed TuJ1. The expression of TuJ1 by FDCs suggests that they may share certain biological characteristics of the neural system.

    更新日期:2019-11-01
  • Parasites, flies and men--21st Meeting of the German Society of Parasitology in Würzburg.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-02-24
    Alicia Ponte-Sucre,Heidrun Moll

    The German Society of Parasitology (Deutsche Gesellschaft für Parasitologie) was founded in 1960 and its 21st biannual meeting took place in Würzburg, Germany, from March 17 to 20, 2004. Whereas interim meetings that are being held every other year focus on specific topics of parasitology, such as the symposia on "Life in Vacuoles" in 2003 and on "Immunomodulation by Parasites" in 2001, the general biannual meetings cover a wide range of topics. This year's meeting at the University of Würzburg was organised by Klaus Brehm and Matthias Frosch (both at the Institute of Hygiene) and Heidrun Moll (Institute for Molecular Biology of Infectious Diseases). It was attended by more than 500 scientists from 16 countries who presented 181 research projects dealing with the topics defence mechanisms and immunology, genomics and proteomics, epidemiology, cell biology and biochemistry, chemotherapy and vaccines, parasite classification and morphology, vectors, intermediate hosts, and veterinary parasitology. In addition, six plenary lectures highlighted the subjects of comparative nematode genomics, cell biology, immunology, and parasite eradication programmes.

    更新日期:2019-11-01
  • Cytoprotective function of sAppalpha in human keratinocytes.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-02-01
    Sven Wehner,Christina Siemes,Gregor Kirfel,Volker Herzog

    sAPPalpha, the soluble form of the beta-amyloid precursor protein, has been shown to act as a potent epidermal growth factor by stimulating keratinocyte proliferation and migration. In this report we provide evidence for a cytoprotective role of sAPPalpha. As a model we used HaCaT cells and normal human keratinocytes (NHK) cultured in the absence of fetal calf serum and bovine pituitary extract. Under these conditions keratinocytes began to undergo apoptosis at increasing rates after 96 h of culture. Surprisingly, keratinocytes were protected from apoptosis by the addition of 50 nM recombinant sAPPalpha. Subsequent experiments were performed to elucidate the regulatory basis of the cytoprotective role of sAPPalpha. We found that recombinant sAPPalpha facilitated the substrate adhesion of keratinocytes in the first 30 minutes after seeding. The basis for this adhesion-promoting function was shown by the ability of recombinant sAPPalpha to continuously coat the culture dish thereby promoting the ability to bind keratinocytes. A second mechanism explaining the cytoprotective role was found in the significant inhibition of apoptosis by recombinant sAPPalpha. In HaCaT cells moderate UV-B irradiation was sufficient to induce apoptosis. In contrast, induction of apoptosis in NHK required additionally the depletion of endogenous sAPPalpha suggesting that sAPPalpha mediates protection against UV-B irradiation. Staurosporine-induced apoptosis rates were significantly reduced by about 59% after addition of recombinant sAPPalpha. These results show that sAPPalpha exerts a pronounced cytoprotective effect and that this effect is mediated by facilitated cell adhesion and by the antiapoptotic function of sAPPalpha.

    更新日期:2019-11-01
  • Keratinocyte growth factor: effects on keratinocytes and mechanisms of action.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-02-01
    Ulrich auf demKeller,Monika Krampert,Angelika Kümin,Susanne Braun,Sabine Werner

    Keratinocyte growth factor (KGF) is a potent and specific mitogen for different types of epithelial cells, and it can protect these cells from various insults. Due to these properties, it is of particular importance for the repair of injured epithelial tissues, and it is currently therapeutically explored for the treatment of radiation- and chemotherapy-induced mucosal epithelial damage in cancer patients. In this review we summarize the current knowledge on the role of KGF in tissue repair and cytoprotection, and we report on its mechanisms of action in keratinocytes.

    更新日期:2019-11-01
  • The arf6 GAP centaurin alpha-1 is a neuronal actin-binding protein which also functions via GAP-independent activity to regulate the actin cytoskeleton.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-02-01
    Erin Thacker,Brian Kearns,Carlene Chapman,Jennifer Hammond,Audrey Howell,Anne Theibert

    Centaurin alpha-1 is a high-affinity PtdIns(3,4,5)P3-binding protein enriched in brain. Sequence analysis indicates centaurin alpha-1 contains two pleckstrin homology domains, ankyrin repeats and an Arf GAP homology domain, placing it in the AZAP family of phosphoinositide-regulated Arf GAPs. Other members of this family are involved in actin cytoskeletal and focal adhesion organization. Recently, it was reported that centaurin alpha-1 expression diminishes cortical actin and decreases Arf6GTP levels consistent with it functioning as an Arf6 GAP in vivo. In the current report, we show that centaurin alpha-1 binds Arfs in vitro and colocalizes with Arf6 and Arf5 in vivo, further supporting an interaction with Arfs. Centaurin alpha-1 expression produces dramatic effects on the actin cytoskeleton, decreasing stress fibers, diminishing cortical actin, and enhancing membrane ruffles and filopodia. Expression of centaurin alpha-1 also enhances cell spreading and disrupts focal adhesion protein localization. The effects of centaurin alpha-1 on stress fibers and cell spreading are reminiscent of those of Arf6GTP. Consistent with this, we show that many of the centaurin alpha-1-induced effects on the actin cytoskeleton and actin-dependent activities do not require GAP activity. Thus, centaurin alpha-1 likely functions via both GAP-dependent and GAP-independent mechanisms to regulate the actin cytoskeleton. Furthermore, we demonstrate that in vitro, centaurin alpha-1 binds F-actin directly, with actin binding activity localized to the PtdIns(3,4,5)P3-binding PH domain. Our data suggest that centaurin alpha-1 may be a component of the neuronal PI 3-kinase cascade that leads to regulation of the neuronal actin cytoskeleton.

    更新日期:2019-11-01
  • Trypanosoma cruzi infection disrupts vinculin costameres in cardiomyocytes.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2005-02-01
    Tatiana G Melo,Danielle S Almeida,Maria de Nazareth S L de Meirelles,Mirian Claudia Pereira

    Chagas' disease cardiomyopathy is an important manifestation of Trypanosoma cruzi infection, leading to cardiac dysfunction and serious arrhythmias. We have here investigated by indirect immunofluorescence assay the distribution of vinculin, a focal adhesion protein with a major role in the transmission of contraction force, during the T. cruzi-cardiomyocyte infection in vitro and in vivo. No change in vinculin distribution was observed after 24 h of infection, where control and T. cruzi-infected cardiomyocytes displayed vinculin localized at costameres and intercalated discs. On the other hand, a clear disruption of vinculin costameric distribution was noted after 72 h of infection. A significant reduction in the levels of vinculin expression was observed at all times of infection. In murine experimental Chagas' disease, alteration in the vinculin distribution was also detected in the infected myocardium, with no costameric staining in infected myocytes and irregular alignment of intercalated discs in cardiac fibers. These data suggest that the disruption of costameric vinculin distribution and the enlargement of interstitial space due to inflammatory infiltration may contribute to the reduction of transmission of cardiac contraction force, leading to alterations in the heart function in Chagas' disease.

    更新日期:2019-11-01
  • Lipid transfer proteins in Parietaria judaica L. pollen grains: immunocytochemical localization and function.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-11-16
    Ana M Vega-Maray,Delia Fernández-González,Rosa Valencia-Barrera,Florentino Polo,Juan A Seoane-Camba,Maria Sudrez-Cervera

    Parietariajudaica L. (Urticaceae) pollen is considered one of the most common causes of allergic respiratory symptoms in the Mediterranean area. The localization of lipid transfer proteins (LTPs) in P. judaica mature and hydrated-activated pollen grains was investigated applying a combination of transmission electron microscopy (TEM) with immunocytochemical methods. Our results show that the content of LTPs in P. judaica pollen grains changes during the process of hydration. The localization of judaica LTPs in the cytoplasm and in the lipid bodies associated with vacuoles demonstrated that LTPs represent primarily intracellular proteins. On the other hand, exposure of the pollen grains to germination medium induced the release of LTPs from the pollen grain. Thus, LTPs are cytoplasmic proteins that are secreted to become available for pollen-stigma interactions and probably induce the IgE antibody responses in allergic patients.

    更新日期:2019-11-01
  • Interferon-gamma acts proapoptotic on hepatic stellate cells (HSC) and abrogates the antiapoptotic effect of interferon-alpha by an HSP70-dependant pathway.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-11-16
    Bernhard Saile,Christoph Eisenbach,Jozsef Dudas,Hammoudeh El-Armouche,Giuliano Ramadori

    The activated hepatic stellate cell (HSC) is an important fibrogenic cell type of the liver. Interferon-alpha (IFN-alpha) has recently been shown to elicit an antiapoptotic effect on activated HSC by a JAK-2-dependent inhibition of caspase-8 activation. As JAK-2 has so far been shown to be a member of the IFN-gamma signal transduction pathway we studied the effect of IFN-gamma on apoptosis as well as on its signaling in primary cultured rat HSC. IFN-gamma elicited a proapoptotic effect in activated HSC. The combination of both, IFN-gamma and IFN-alpha, however, completely cancelled each other's effect. No effect of the two cytokines on major members of apoptosis-regulating systems (CD95, CD95L, bcl-2, bax, bcl-xL, p53, p21WAF1, p27, NFkappaB) could be observed. Western Blot analysis revealed that gene expression of the chaperone HSP70 was found to be downregulated by IFN-gamma but upregulated by IFN-alpha. The effect could be abrogated by administration of both. After transfection of activated HSC with a pCMV-HSP70 M expression vector the proapoptotic effect of IFN-gamma was cancelled. Using HSP70 antisense, the antiapoptotic effect of IFN-alpha was cancelled as well. However IFN-gamma had no effect on upregulation of JAK-2 and pJAK-2 by IFN-alpha. Taken together IFN-gamma and IFN-alpha exert opposite effects on apoptosis in HSC. This effect is mediated by their counteracting effect on HSP70 expression which acts antiapoptotic at the level of caspase-8.

    更新日期:2019-11-01
  • My colloboration with John Heuser.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-30
    Thomas S Reese

    更新日期:2019-11-01
  • Secreted arginases from phylogenetically farrelated lichen species act as cross-recognition factors for two different algal cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-28
    María-Estrella Legaz,Blanca Fontaniella,Ana-María Millanes,Vicente Carlos

    Purified arginases secreted from Evernia prunastri and Xanthoria parietina thalli hydrolyze arginine in a Mn2+ -dependent reaction. Ca2+ cannot replace Mn2+, but its addition to reaction mixtures in the presence of Mn2+ significantly inhibited arginase activity. Arginases from both lichen species also show lectin function, binding to the cell wall of both homologous and heterologous algae. Such binding is enhanced by both Ca2+ and Mn2+ and results in cytoagglutination, which is counteracted by alpha-D-galactose. A putative ligand for these lectins consists of a glycosylated urease, the polysaccharide moiety of which is uniquely composed of alpha-D-galactose. Binding of lectins inhibits its enzymatic activity, which is recovered after desorption of the lectin with alpha-D-galactose. Urease is also eluted from arginase-agarose columns by using alpha-D-galactose as eluent. Data demonstrate ligand-dependent retention of the fungal lectin on the algal cell surface and this is consistent with a model of recognition of compatible algae, through which algal cells would form a lichen with a lectin-secreting fungus only when these cells contain the specific ligand for the lectin in their cell walls. This is, lectin binding is used as a mechanism for ensuring specificity in the association.

    更新日期:2019-11-01
  • Differential expression and cellular localization of ERKs during organogenic nodule formation from internodes of Humulus lupulus var. Nugget.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-28
    Marta Sousa Silva,Ana Margarida Fortes,Pilar Sanchéz Testillanob,Maria del Carmen Risueño,Maria Salom'e Pais

    The expression and subcellular localization of extracellular signal-regulated kinase 1 or 2 (ERK1/2) homologues (HLERK1/2) during the process of organogenic nodule formation in Humulus lupulus var. Nugget was studied using antibodies specific for ERK1 and ERK2, and for phosphorylated mitogen-activated protein kinases (MAPKs). The increase in HLERK levels, detected by Western blotting 12 hours after wounding suggests their involvement in response to the wounding treatment applied for morphogenesis induction. In dividing cambial cells, occurring in between 4 and 7 days after morphogenesis induction, as well as in dividing prenodular cells (15 days after induction) HLERK1 and/or 2 were localized in the nucleus. However, as soon as nodular cells start proliferating to form shoot meristems, HLERK1 and 2 were detected in the cytoplasm and not in the nucleus. The data reported account for a differential expression and activation of HLERK1 and HLERK2 throughout the process of nodule formation and plantlet regeneration. HLERK1 appears to be expressed in the stages of nodule formation and plantlet regeneration, playing a possible role in controlling cell proliferation and differentiation. HLERK2 may be induced as a response to reactive oxygen species (ROS) generated by wounding of internodes as its expression is reduced in liquid medium with less oxygen availability compared to solid medium. However, addition of a ROS inhibitor to the liquid medium does not result in a further decrease in the HLERK2 level.

    更新日期:2019-11-01
  • The lamina-associated polypeptide 2 (LAP2) genes of zebrafish and chicken: no LAP2alpha isoform is synthesised by non-mammalian vertebrates.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-28
    Kristina Prüfert,Christoph Winkler,Micheline Paulin-Levasseur,Georg Krohne

    The mammalian lamina-associated polypeptide 2 (LAP2) gene encodes six isoforms (LAP2alpha, beta, delta, epsilon, gamma, zeta) that are synthesised from alternatively spliced mRNAs. The mammalian LAP2alpha is one of the predominant isoforms and localised in the nucleoplasm whereas LAP2beta, delta, epsilon, and gamma are integral membrane proteins of the inner nuclear membrane. We have analysed the LAP2 gene structure of the zebrafish Danio rerio as an attractive lower vertebrate model organism. The zebrafish LAP2 (ZLAP2) gene without regulatory sequences spans approximately 19 kb of genomic DNA. It contains 15 exons that encode the isoforms ZLAP2beta, gamma, and omega which are localised in the inner nuclear membrane. By radiation hybrid mapping, we have located the gene onto linkage group 4 between EST markers fc01g04 (213.97cR) and fb49f01 (215.69cR). The identification of a chicken genomic clone comprising the complete coding region of the avian LAP2 gene enabled us to compare the LAP2 gene structure amongst vertebrates. In contrast to the mammalian LAP2 gene, the zebrafish and the chicken sequences do not encode for an alpha-isoform. In parallel we searched for an alpha-isoform in birds using polyclonal and monoclonal LAP2 antibodies specific for the common evolutionary conserved aminoterminal domain present in all isoforms. We detected LAP2beta as the predominant isoform but no LAP2alpha in tissues of 10-day-old chicken embryos and cultured chicken fibroblasts thus confirming the genomic analysis. The comparison of each zebrafish and chicken LAP2 exon with the corresponding exons of the human LAP2 gene demonstrates that the degree of identity at the amino acid level is much higher between the human and chicken than between the human and zebrafish sequences. By Blast search with the nucleotide and amino acid sequences of the human LAP2alpha, we did not find any significant homologies in databases of the zebrafish and chicken sequences. Our data suggest that LAP2alpha is a novelty of mammals.

    更新日期:2019-11-01
  • Sequence, evolution and tissue expression patterns of an epidermal type I keratin from the shark Scyliorhinus stellaris.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-27
    Michael Schaffeld,Simon Höffling,Markl Jürgen

    From the shark Scyliorhinus stellaris we cloned and sequenced a cDNA encoding a novel type I keratin, termed SstK10. By MALDI-MS peptide mass fingerprinting of cytoskeletal proteins separated on polyacrylamide gels, we assigned SstK10 to a 46-kDa protein which is the major epidermal type I ("IE") keratin in this fish and is specifically expressed in stratified epithelia. In a phylogenetic tree based on type I keratin sequences and with lamprey keratins applied as outgroup, SstK10 branches off in a rather basal position. This tree strongly supports the concept that teleost keratins and tetrapod keratins resulted from two independent gene radiation processes. The only exception is human K18 because its orthologs have been found in all jawed vertebrates (Gnathostomata) studied; in the tree, they form a common, most early branch, with the shark version, SstK18, in the most basal position. Thus, the sequences of SstK10 and SstK18 also favor the classical view of vertebrate evolution that considers the cartilaginous fishes as the most ancient living Gnathostomata. To determine the overall expression patterns of epidermal ("E") and simple epithelial ("S") keratins in this shark, we furthermore tested a panel of monoclonal anti-keratin antibodies by immunofluorescence microscopy of frozen tissue sections, and in immunoblots of cytoskeletal preparations, demonstrating that immunodetection of specific keratins is a convenient method to characterize epithelial tissues in shark.

    更新日期:2019-11-01
  • The DHE cell line as a model for studying rat gastro-intestinal mucin expression: effects of dexamethasone.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-27
    Aurélien Trompette,Carine Blanchard,Sandra Zoghbi,Jacques Bara,Jean Claustre,Gérard Jourdan,Jean Alain Chayvialle,Pascale Plaisancé

    The expression of mucin genes was evaluated in rat intestinal cell lines in order to establish an in vitro model for investigating the regulation of intestinal mucin expression in this species. Two rat intestinal cancer cell lines (DHE, LGA) and three nontumoral rat intestinal cell lines (IEC6, IEC17, IEC18) were screened. The mRNA expression of rMuc1, rMuc2, rMuc3, rMuc4, and rMuc5AC mucin genes was studied by semiquantitative RT-PCR, real-time RT-PCR and Northern-blot analysis. Results were correlated with immunohistochemical expression of rat gastric and intestinal mucin proteins, and secretion of glycoconjugates was examined by enzyme-linked lectin assay. We showed that mRNA of rMucl and rMuc2 were constitutively expressed in all IEC cell populations but periodic acid Schiff staining of these cells did not reveal the presence of glycoproteins. DHE cells expressed rMuc1-5AC mRNA and LGA expressed the same mucins but the level of rMuc4 was much lower. Mucin mRNA expression also differed in relation with the length of cultivation. Immunocytochemical studies revealed the presence of gastric and intestinal mucins in the two tumoral cell lines. Functional experiments showed that bethanechol, A23187 and PMA stimulated release of glycoconjugates in DHE but not in LGA cells. Treatment of DHE cells with dexamethasone (10(-7) mol/l) enhanced rMuc2 mRNA but decreased rMuc1 and rMuc5AC mRNA. Real-time RT-PCR showed that the expression of rMuc1 and rMuc5AC genes was reduced by more than tenfold after 24 h. The increased expression of rMuc2 gene was confirmed by Northern blot analysis. In conclusion, DHE cells provide a valuable cellular model for research on rat mucin secretion and expression.

    更新日期:2019-11-01
  • Stimulation of quiescent cells by individual polypeptide growth factors is limited to one cell cycle.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-10-27
    Viktoria Andreeva,Igor Prudovsky,Maciag Thomas

    Since little is known about the function of polypeptide growth factors as regulators of multiple cell cycles, we compared the ability of FGF1, PDGF-AB and serum to induce a second round of DNA synthesis in Swiss 3T3 cells previously exposed to either FGF1, PDGF-AB or serum during the first cell cycle using [14C]- and [3H]thymidine in a double labeling system to distinguish between the first and second cell cycles. Surprisingly, we observed that cells exposed to either FGF1 or PDGF-AB in the first cell cycle were unable to synthesize DNA in response to FGF1 or PDGF-AB in the second cell cycle; yet these cells responded well to serum as a second cycle mitogen. Interestingly, while cells exposed to either FGF1 or PDGF-AB in the second cycle displayed normal receptor-mediated signaling and expressed cyclin D and E, they, like senescent fibroblasts and endothelial cells, failed to express cyclin A, and the continuous exposure of cells to either FGF1 or PDGF-AB resulted in a decrease in the kinase activity of the cyclin E/cdk2 complex. In addition, an increased association of this complex was observed with p21 CIP in an FGF1-dependent manner as well as with p27 KIP in a PDGF-AB-dependent manner. Lastly, the downregulation of p21 expression using an antisense strategy was able to partially rescue the replicative response of Swiss 3T3 cells to FGF1 in the second cycle. These data suggest that (i) FGF1 and PDGF-AB may limit their mitogenic effect to a single cell cycle, (ii) entry into the second round of replication is serum dependent and (iii) the self-limiting nature of FGF1 and PDGF-AB correlates with the accumulation of the cdk inhibitors, p21 and p27, respectively.

    更新日期:2019-11-01
  • Characterization of proteins secreted during maize microspore culture: arabinogalactan proteins (AGPs) stimulate embryo development.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-09-07
    Gisèle Borderies,Mickael le Béchec,Michel Rossignol,Claude Lafitte,Erwan Le Deunff,Michel Beckert,Christian Dumas,Matthys-Rochon Elisabeth

    To study molecules secreted from cultured plant cells that promote development, maize microspores were transferred into culture and the conditioned media were collected over time and analysed. Electrophoresis indicated that both non-glycosylated and glycosylated proteins including arabinogalactan proteins (AGPs) appeared in the medium and their concentration increased during the time of culture. The development of embryos was correlated with the presence of specific extracellular proteins, using an experimental system based on a tunicamycin inhibition test. In addition, a precise protein analysis was conducted using MALDI-TOF and ESI-MS-MS techniques. These approaches have allowed the identification of 5 other types of proteins: a cell wall invertase, two thaumatin isoforms, one 1-3 beta-glucanase and two chitinase isoforms. Altogether these experiments and results open ways for research aimed at understanding which molecules stimulate embryo formation. Moreover, AGPs may be used to stimulate the development of microspores (pollen embryogenesis) prepared from non-responsive genotypes.

    更新日期:2019-11-01
  • Differential RNA interference: replacement of endogenous with recombinant low density lipoprotein receptor-related protein (LRP).
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-06-19
    Alexander Laatsch,Sergei Ragozin,Thomas Grewal,Ulrike Beisiegel,Heeren Joerg

    The interpretation of experiments involving the overexpression of a recombinant cDNA is often hampered by the interference of mRNA expression from the endogenous gene locus. Unless cell lines from naturally occurring mutations or knockout mice are available, difficult and time-consuming gene targeting techniques are required to inhibit endogenous gene expression. Using a method we refer to as "differential RNA interference" we demonstrate that RNA interference can be used to selectively suppress endogenous gene expression without affecting the expression of a co-transfected recombinant version of the same protein. Functional analyses of recombinant low density lipoprotein receptor-related protein (LRP) to study its involvement in lipid metabolism have been shown to be extremely difficult due to its large cDNA and the unavailability of suitable LRP-deficient cell lines. We constructed an expression vector containing the full-length coding sequence of human LRP fused to EGFP and a vector expressing small hairpin RNA directed against the 3'-untranslated region of the wild-type human LRP mRNA (LRP-shRNA). When overexpressed, EGFP-tagged LRP colocalizes with endogenous LRP and stimulates the uptake of LRP ligands. Overexpression of LRP-shRNA vectors significantly inhibits LRP expression, as judged by quantitative RT-PCR, Western blot and immunofluorescence analysis, and it dramatically decreases receptor-associated protein (RAP) uptake. Finally, co-transfection of EGFP-LRP and LRP-shRNA vectors demonstrates selective inhibition of endogenous LRP expression without affecting simultaneous expression of recombinant LRP protein. Thus, utilization of "differential RNA interference" provides a new experimental approach to selectively study the function of any recombinant protein in any given cell line without interference of endogenous protein expression.

    更新日期:2019-11-01
  • Dr. Josef Steiner Cancer Research Prize 2003 to EJCB Board Member María Blasco.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2004-04-17
    Hans Bloemendal,Dagmar Gebauer,Reinhard Jahn,Manfred Schliwa,Sabine Werner

    更新日期:2019-11-01
  • Meeting report: molecular mechanisms of inflammation: how leukocytes come, see and seize.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-08-20
    Cord Sunderkötter,David Mosser,Anne Ridley,Clemens Sorg,Johannes Roth

    Inflammation has developed in the course of evolution as a process to defend the body against invading microbes and to respond to injuries. Several mechanisms of interaction between endothelial cells and leukocytes have evolved to render inflammation an effective, tightly controlled, and self-limited process. Imperfect executions of this "game plan" lead to pathological abnormalities resulting in diseases. The meeting on Molecular Mechanisms of Inflammation held at Schloss Elmau, Germany in October 2002 has featured activation of endothelial cells, adhesion and migration of leukocytes, as well as receptor pathways for activation and deactivation of leukocytes and, concomitantly, of the inflammatory response. Thus, a review on some of the presented data casts interesting spotlights on different steps of the inflammatory cascade.

    更新日期:2019-11-01
  • Casein kinase I delta (CKIdelta) is involved in lymphocyte physiology.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-08-20
    Tanja Maritzen,Jürgen Löhler,Wolfgang Deppert,Uwe Knippschild

    The casein kinase I isoform delta (CKIdelta) plays an important role in vesicular trafficking, chromosome segregation, cell cycle progression, cytokinesis, developmental processes, and circadian rhythm. In this study we examined the distribution pattern of CKIdelta and quantified its kinase activity in various tissues of BALB/c mice. Whereas CKIdelta is ubiquitously expressed, differences in the kinase activity were detected in organs with comparable CKIdelta protein levels. To elucidate the role of CKIdelta in splenocytes, which displayed the highest kinase activity, the cell type-specific distribution of CKIdelta within the spleen was investigated. Immunohistochemical analysis revealed a strong CKIdelta immunolabeling in lymphoid cells of the white pulp, while in the red pulp CKIdelta immunoreactivity was found in cells of various haematopoietic lineages. Furthermore, high CKIdelta kinase acitivity was observed in isolated lymphocytes and granulocytes of young BALB/c mice. In lymphocytes the CKIdelta activity increased upon mitogenic stimulation, whereas upon gamma-irradiation CKIdelta protein and activity levels were diminished. Interestingly, the comparison of CKIdelta activity in p53+/+ and p53-/- lymphocytes revealed a higher activity in p53+/+ lymphocytes. In addition, we observed an increased immunostaining in cells of hyperplastic B follicles and advanced B-cell lymphomas in p53-deficient mice. Thus, our results indicate that CKIdelta plays several roles in lymphocyte physiology.

    更新日期:2019-11-01
  • Nuclear staining for the small heat shock protein alphaB-crystallin colocalizes with splicing factor SC35.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-08-20
    Anke E van Rijk,Gerard J J Stege,Erik J Bennink,Albrecht May,Hans Bloemendal

    AlphaB-Crystallin has for a long time been considered a specific eye lens protein. Later on it appeared that this protein belongs to the family of the small heat shock proteins and that it occurs also extra-lenticularly in many different cell types. AlphaB-Crystallin is mainly present in the cytoplasm, but there are some indications that it might have a function in the nucleus too. However, till now its presence in the nucleus is uncertain. We therefore compared the localization of alphaB-crystallin in nine cell lines cultured under normal conditions using four different antisera. All four antisera gave a diffuse staining for alphaB-crystallin in the cytoplasm, but one of the antibodies consistently showed nuclear staining in eight of the cell types, in the form of distinct speckles. These speckles are equally pronounced in the different cell types, whether or not cytoplasmic alphaB-crystallin is present. Preabsorption of the antiserum with alphaB-crystallin abolished the staining. Furthermore we demonstrate that if only minor amounts of alphaB-crystallin are present, the protein seems to be located exclusively in the nucleus. However, in case of higher amounts of protein, alphaB-crystallin is distributed between cytoplasm and nucleus. The nuclear alphaB-crystallin exists, like the cytoplasmic alphaB-crystallin, in non-phosphorylated and phosphorylated forms, is Triton-insoluble but can be extracted by 2 M NaCl. These data suggest that alphaB-crystallin might be bound to the nuclear matrix per se or to nuclear matrix proteins via other proteins. In agreement with other nuclear matrix proteins, nuclear alphaB-crystallin staining turns diffuse upon mitosis and leaves the chromosomes unstained. Double staining experiments revealed colocalization of alphaB-crystallin with the splicing factor SC35 in nuclear speckles, suggesting a role for alphaB-crystallin in splicing or protection of the splicing machinery.

    更新日期:2019-11-01
  • P446L-importin-beta inhibits nuclear envelope assembly by sequestering nuclear envelope assembly factors to the microtubules.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-08-20
    László Tirián,Gyula Timinszky,János Szabad

    The P446L mutant Drosophila importin-beta (P446L-imp-beta) has been reported to prohibit--in dominant negative fashion--nuclear envelope (NE) assembly. Along elucidating the mode of action of P446L-imp-beta we studied in vitro NE assembly on Sepharose beads. While Drosophila embryo extracts support NE assembly over Sepharose beads coated with Ran, NE assembly does not take place in extracts supplied with exogenous P446L-imp-beta. A NE also forms over importin-beta-coated beads. Surprisingly, when immobilized to Sepharose beads P446L-imp-beta as efficiently recruits NE vesicles as normal importin-beta. The discrepancy in behavior of cytoplasmic and bead-bound P446L-imp-beta appears to be related to icreased--as compared to normal importin-beta--microtubule (MT) binding ability of P446L-imp-beta. While wild-type importin-beta is able to bind MTs and the binding decreases upon RanGTP interaction, P446L-imp-beta cannot be removed from the MTs by RanGTP. P446L-imp-beta, like normal importin-beta, binds some types of the nucleoporins that have been known to be required for NE assembly at the end of mitosis. It appears that the inhibitory effect of P446L-imp-beta on NE assembly is caused by sequestering some of the nucleoporins required for NE assembly to the MTs.

    更新日期:2019-11-01
  • The division of pleomorphic plastids with multiple FtsZ rings in tobacco BY-2 cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-07-19
    Yu Momoyama,Yutaka Miyazawa,Shin-ya Miyagishima,Toshiyuki Mori,Osami Misumi,Haruko Kuroiwa,Kuroiwa Tsuneyoshi

    Plastids, an essential group of plant cellular organelles, proliferate by division to maintain continuity through cell lineages in plants. In recent years, it was revealed that the bacterial cell division protein FtsZ is encoded in the nuclear genome of plant cells, and plays a major role in the plastid division process forming a ring along the center of plastids. Although the best-characterized type of plastid division so far is the division with a single FtsZ ring at the plastid midpoint, it was recently reported that in some plant organs and tissues, plastids are pleomorphic and form multiple FtsZ rings. However, the pleomorphic plastid division mechanism, such as the formation of multiple FtsZ rings, the constriction of plastids and the behavior of plastid (pt) nucleoids, remains totally unclear. To elucidate these points, we used the cultured cell line, tobacco (Nicotiana tabacum L.) Bright Yellow-2, in which plastids are pleomorphic and show dynamic morphological changes during culture. As a result, it was revealed that as the plastid elongates from an ellipsoid shape to a string shape after medium renewal, FtsZ rings are multiplied almost orderly and perpendicularly to the long axis of plastids. Active DNA synthesis of pt nucleoids is induced by medium transfer, and the division and the distribution of pt nucleoids occur along with plastid elongation. Although it was thought that the plastid divides with simultaneous multiple constrictions at all the FtsZ ring sites, giving rise to many small plastids, we found that the plastids generally divide constricting at only one FtsZ ring site. Moreover, using electron microscopy, we revealed that plastid-dividing (PD) rings are observed only at the constriction site, and not at swollen regions. These results indicate that in the pleomorphic plastid division with multiple FtsZ rings, the formation of PD rings occurs at a limited FtsZ ring site for one division. Multiplied FtsZ rings seem to localize in advance at the expected sites of division, and the formation of a PD ring at each FtsZ ring site occurs in a certain order, not simultaneously. Based on these results, a novel model for the pleomorphic plastid division with multiple FtsZ rings is proposed.

    更新日期:2019-11-01
  • Co-localization of apoptosis-regulating proteins in mouse mammary epithelial HC11 cells exposed to TGF-beta1.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-07-19
    Olga Kolek,Barbara Gajkowska,Michał Marek Godlewski,Motyl Tomasz

    TGF-beta1 is an apoptogenic agent for mammary epithelial cells (MEC). The molecular mechanism of the TGF-beta1-induced apoptosis remains, however, obscure. In the present study we used laser scanning cytometry, confocal microscopy and immunogold electron microscopy to analyze the expression, aggregation and co-localization of caspase-8, Bid, Bax and VDAC-1. These proteins are regarded as the most important factors involved in the regulatory phase of TGF-beta1-induced apoptosis. Apoptosis in HC11 mouse MEC manifested with a simultaneous increase in expression and subcellular aggregation of caspase-8, Bid, Bax and VDAC-1. Confocal microscopy revealed a strong pattern of co-localization of examined proteins during both early and late apoptosis. Experiments with double- and triple-staining immunoelectron microscopy showed a co-localization of Bax/Bid, caspase-8/Bax/Bid, and Bax/VDAC-1, on the membranes of mitochondria, Golgi apparatus, rough endoplasmic reticulum, nuclear envelope, nuclear pore, and within the nucleus. In conclusion, the observed pattern of changes in aggregation and subcellular localization of caspase-8, Bid, Bax and VDAC-1 during TGF-beta1-induced apoptosis in HC11 mouse MEC suggests an interaction between these proteins and formation of multimeric complexes on organellar membranes, thus controlling their permeability for intracellular mediators of apoptosis.

    更新日期:2019-11-01
  • Involvement of the Galbeta1 - 3GalNAcbeta structure in the recognition of apoptotic bodies by THP-1 cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-07-19
    Eugenia Rapoport,Sergei Khaidukov,Olga Baidina,Vladimir Bojenko,Ekaterina Moiseeva,Galina Pasynina,Uwe Karsten,Nikolay Nifant'ev,Jacques LePendue,Nicolai Bovin

    A specific apoptotic glycosylation pattern may play an assistant or even a causative role in phagocytosis of apoptotic bodies. To elucidate the role of macrophages in lectin-mediated phagocytosis, an experimental system was used, where monocyte-derived THP-1 cells engulf the apoptotic bodies from the melanoma cell line MELJUSO. A flow cytometry assay was performed to reveal lectin expression and quantify the phagocytosis of apoptotic bodies. Taking into account that siglecs, a mannose receptor and galectins expressed on macrophages could be involved in engulfment of apoptotic bodies we studied their potential expression on THP-1 cells by means of polyacrylamide glycoconjugates. A strong binding of the cells to siglec ligands (3'SiaLac, 6'SiaLac, [Neu5Acalpha2-8]2) and galectin ligands (LacNAc, GalNAcbeta1 - 4GlcNAc, Galbeta1 - 3GalNAcbeta and asialoGM1) was observed. To reveal the corresponding targets on apoptotic bodies, the carbohydrate pattern of MELJUSO cells was analyzed. The apoptotic membrane was characterized by a high level of glycans terminated by galactose or sialic acid. To study lectin-mediated phagocytosis of apoptotic bodies by THP-1 cells, an inhibitory phagocytosis assay was performed. Binding of Galbeta1 - 3GalNAc- or LacNAc-specific reagents (lectins and antibodies) to apoptotic bodies abolished their engulfment by the THP-1 cells whereas blocking of Neu5Acalpha2 - 6 or Neu5Acalpha2 - 3 sites by the corresponding lectins was not effective. Furthermore, Galbeta1 - 3GalNAcbeta-PAA or asialoGM1-PAA binding to the THP-1 cells decreased phagocytosis, whereas two other potent THP-1-binding probes, LacNAc-PAA and GalNAcbeta1 - 4GlcNAc-PAA did not inhibit phagocytosis. Thus, Galbeta1 - 3GalNAcbeta-terminated chains represented on the apoptotic bodies but not the other tested galectin ligands appear to be a target for THP-1 cells.

    更新日期:2019-11-01
  • Agonist-dependent trafficking of alpha2-adrenoceptor subtypes: dependence on receptor subtype and employed agonist.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-06-13
    Tuire Olli-Lähdesmäki,Mika Scheinin,Katariina Pohjanoksa,Jaana Kallio

    Many G protein-coupled receptors (GPCRs) are internalized from the plasma membrane after agonist exposure. Previously, marked agonist-induced internalization of human alpha2A- and alpha2B-adrenergic receptors (AR) was observed in transfected neuronal rat pheochromocytoma (PC12) cells; alpha2A- and alpha2B-AR were internalized into partly distinct intracellular vesicles (Olli-Lähdesmäki et al., J. Neurosci. 19, 9281-9288, 1999). In this paper, the extent of alpha2-AR internalization was quantitated in human embryonic kidney (HEK-293) and PC12 cells by combined application of cell surface biotinylation and ELISA methods, which allow measurement of protein trafficking in intact, differentiated and undifferentiated cells. Significant subtype-specific (but not cell type-dependent) trafficking of human alpha2-AR was observed by quantitation and immunocytochemistry. Agonist-induced sequestration of alpha2B-AR was markedly reduced after blocking the formation of clathrin-coated vesicles by hyperosmotic sucrose pretreatment. The sequestration of alpha2A-AR was partly inhibited after sucrose pretreatment but could be further reduced after inhibiting the formation of both clathrin-coated and caveolin vesicles by combined pretreatment with hyperosmotic sucrose and filipin. Differences were also observed in the recycling of alpha2A- and alpha2B-AR. The extent of maximal agonist-induced sequestration in PC12 cells was not directly dependent on relative agonist efficacy.

    更新日期:2019-11-01
  • Comparative analysis of Dp427-deficient mdx tissues shows that the milder dystrophic phenotype of extraocular and toe muscle fibres is associated with a persistent expression of beta-dystroglycan.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-06-13
    Paul Dowling,James Lohan,Kay Ohlendieck

    The cell biological hypothesis of Duchenne muscular dystrophy assumes that deficiency in the membrane cytoskeletal element dystrophin triggers a loss in surface glycoproteins, such as beta-dystroglycan, thereby rendering the sarcolemmal membrane more susceptible to micro-rupturing. Secondary changes in ion homeostasis, such as increased cytosolic Ca2+ levels and impaired luminal Ca2+ buffering, eventually lead to Ca2+-induced myonecrosis. However, individual muscle groups exhibit a graded pathological response during the natural time course of x-linked muscular dystrophy. The absence of the dystrophin isofom Dp427 does not necessarily result in a severe dystrophic phenotype in all muscle groups. In the dystrophic mdx animal model, extraocular and toe muscles are not as severely affected as limb muscles. Here, we show that the relative expression and sarcolemmal localization of the central trans-sarcolemmal linker of the dystrophin-glycoprotein complex, beta-dystroglycan, is preserved in mdx extraocular and toe fibres by means of two-dimensional immunoblotting and immunofluorescence microscopy. Thus, with respect to improving myology diagnostics, the relative expression levels of beta-dystroglycan appear to represent reliable markers for the severity of secondary changes in dystrophin-deficient fibres. Immunoblotting and enzyme assays revealed that mdx toe muscle fibres exhibit an increased expression and activity of the sarcoplasmic reticulum Ca2+-ATPase. Chemical crosslinking studies demonstrated impaired calsequestrin oligomerization in mdx gastrocnemius muscle indicating that abnormal calsequestrin clustering is involved in reduced Ca2+ buffering of the dystrophic sarcoplasmic reticulum. Previous studies have mostly attributed the sparing of certain mdx fibres to the special protective properties of small-diameter fibres. Our study suggests that the rescue of dystrophin-associated glycoproteins, and possibly the increased removal of cytosolic Ca2+ ions, might also play an important role in protecting muscle cells from necrotic changes.

    更新日期:2019-11-01
  • Effect of stretching on gene expression of beta1 integrin and focal adhesion kinase and on chondrogenesis through cell-extracellular matrix interactions.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-05-20
    Ichiro Takahashi,Kazuyuki Onodera,Yasuyuki Sasano,Itaru Mizoguchi,Jin-Wan Bae,Hidetoshi Mitani,Manabu Kagayama,Hideo Mitani

    Differentiation of skeletal tissues, such as bone, ligament and cartilage, is regulated by complex interaction between genetic and epigenetic factors. In the present study, we attempted to elucidate the possible role of cell-extracellular matrix (ECM) adhesion on the inhibitory regulation in chondrogenesis responding to the tension force. The midpalatal suture cartilages in rats were expanded by orthopedic force. In situ hybridization for type I and II collagens, immunohistochemical analysis for fibronectin, alpha5 and beta1 integrins, paxillin, and vinculin, and cytochemical staining for actin were used to demonstrate the phenotypic change of chondrocytes. Immunohistochemical analysis for phosphorylation and nuclear translocation of extracellular signal-regulated kinase (ERK)-1/2 was performed. The role of the cell-ECM adhesion in the response of the chondroprogenitor cells to mechanical stress and the regulation of gene expression of focal adhesion kinase (FAK) and integrins were analyzed by using an in vitro system. A fibrous suture tissue replaced the midpalatal suture cartilage by the expansive force application for 14 days. The active osteoblasts that line the surface of bone matrix in the newly formed suture tissue strongly expressed the type I collagen gene, whereas they did not express the type II collagen gene. Although the numbers of precartilaginous cells expressing alpha5 and beta1 integrin increased, the immunoreactivity of alpha5 integrin in each cell was maintained at the same level throughout the experimental period. During the early response of midpalatal suture cartilage cells to expansive stimulation, formation of stress fibers, reorganization of focal adhesion contacts immunoreactive to a vinculin-specific antibody, and phosphorylation and nuclear translocation of ERK-1/2 were observed. In vitro experiments were in agreement with the results from the in vivo study, i.e. the inhibited expression of type II collagen and upregulation in integrin expression. The arginine-glycine-aspartic acid-containing peptide completely rescued chondrogenesis from tension-mediated inhibition. Thus, we conclude that stretching activates gene expression of beta1 integrin and FAK and inhibits chondrogenesis through cell-ECM interactions of chondroprogenitor cells.

    更新日期:2019-11-01
  • Lamina-associated polypeptide 2beta (LAP2beta) is contained in a protein complex together with A- and B-type lamins.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-04-15
    Carmen Lang,Georg Krohne

    Lamina-associated polypeptide 2beta (LAP2beta) of vertebrates is an integral membrane protein of the inner nuclear membrane that is generated by alternative splicing from the LAP2 gene. In the majority of Xenopus somatic cells including cultured kidney epithelial cells (A6 cells) there is only one major LAP2 isoform expressed that has the highest similarities with the mammalian LAP2beta whereas isoforms corresponding in size to the mammalian LAP2gamma and alpha are not detectable. We selected A6 cells and A6 cells stably expressing GFP fusion proteins of Xenopus LAP2beta (XLAP2Pbeta) as a model system to study interactions between LAP2beta and lamins. In vitro binding experiments with GST-XLAP2beta fusion proteins and immunoprecipitations with antibodies to GFP revealed that XLAP2beta is part of a complex that contains A- and B-type lamins. For the targeting to the nuclear envelope and the in vivo formation of this complex, GFP fusion proteins were sufficient comprising only the carboxyterminal 135 amino acids of XLAP2beta or the comparable region of zebrafish LAP2beta. A highly conserved 36 amino acids long sequence is located in this region of LAP2beta that is part of the lamina-binding domain previously identified in rat LAP2beta. GFP-LAP2beta fusion proteins of Xenopus, zebrafish, and rat that contained this sequence do compete with endogenous LAP2 in transfected cells for the same binding sites in the lamina. Our data indicate that the lamina-binding site of LAP2beta has been highly conserved during vertebrate evolution and suggests that this region of LAP2beta mediates the interactions between polymers of A- and B-type lamins.

    更新日期:2019-11-01
  • Integrin alphavbeta3 binding to human alpha5-laminins facilitates FGF-2- and VEGF-induced proliferation of human ECV304 carcinoma cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-04-15
    Elke Genersch,Maria Ferletta,Ismo Virtanen,Hermann Haller,Peter Ekblom

    Human ECV304 cells respond reproducibly by tube formation to complex basement membrane matrices. Laminins are major glycoproteins of basement membranes. We therefore studied the ability of ECV304 cells to attach to defined laminin isoforms and to fibronectin, and identified the involved laminin receptors. The cells bound poorly to fibronectin, to some extent to laminin-1, whereas laminin-2/4 and -10/11 were strong adhesive substrates. Antibody perturbation assays showed that adhesion to laminin-1 was mediated by integrin alpha6beta1, and adhesion to laminin-2/4 by cooperative activity of integrins alpha3beta1 and alpha6beta1. Adhesion of ECV 304 cells to laminin-10/11 was mainly mediated by integrins alpha3beta1, with minor involvement of alpha6beta1/4 and alphavbeta3. Solid-phase binding assays confirmed that integrin alphavbeta3 binds human laminin-10/11 and -10, in an RGD-dependent fashion. Although integrin alphavbeta3 played a very minor role in cell adhesion to laminin-10/11, this interaction facilitated growth factor-induced proliferation of ECV304 cells. In response to FGF-2 or VEGF, the cells proliferated better when attached on laminin-10/11 than on laminin-1, -2/4, or gelatin. The proliferation induced by the joint application of laminin-10/11 and either one of the growth factors could be blocked by antibodies against integrin alphavbeta3. Fragments of several other basement membrane components are known to interact with alphavbeta3. The current data show that that integrin alphavbeta3 can bind intact alpha5-containing laminin trimers. Since the laminin alpha5 chain is broadly expressed in adult basement membranes, this interaction could be physiologically important. Our data suggest that this interaction is involved in the regulation of cellular responses to growth factors known to be involved in epithelial and endothelial development.

    更新日期:2019-11-01
  • Chemotactically directed redistribution of alpha-actinin precedes morphological polarization and reversal of polarity in human polymorphonuclear leucocytes (PMNs).
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-03-22
    Alireza Dehghani Zadeh,Hansuli Keller

    We have determined the temporal and spatial relationship between cell polarization and alpha-actinin localization by analysing the redistribution of alpha-actinin and F-actin in spherical PMNs developing polarity and in polarized cells reversing polarity following localized stimulation with chemotactic peptide using micropipettes. Initially spherical PMNs develop a one-sided accumulation of alpha-actinin before lamellipodia enriched in alpha-actinin are formed. In polarized cells, alpha-actinin is concentrated at the leading front. When polarity is reversed, alpha-actinin redistribution to the uropod precedes reversal of morphological polarity and formation of new lamellipodia at the uropod. Later, lamellipodia enriched in F-actin and alpha-actinin develop at the former uropod to form a new front. The data document that redistribution of alpha-actinin is a very early event in the development of polarity, which precedes formation of lamellipodia.

    更新日期:2019-11-01
  • Towards determining the differentiation program of antigen-presenting dendritic cells by transcriptional profiling.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-03-22
    Xin-Sheng Ju,Christine Hacker,Jaime Madruga,Steffen M Kurz,Siegne Knespel,Gitta Blendinger,Stefan Rose-John,Zenke Martin

    Dendritic cells (DC) represent professional antigen-presenting cells that develop from hematopoietic progenitors through successive steps of differentiation. Employing DNA microarray technology, we analysed the specific changes in gene expression that occur when human progenitor cells differentiate into DC. CD34 progenitor cells were first amplified in vitro with stem cell factor (SCF), Flt3 ligand (FL), thrombopoietin and IL-6/soluble IL-6 receptor fusion protein, and cells were then induced to differentiate into DC with IL-4 and GM-CSF. DC maturation was induced by TNFalpha. Progenitor cells and DC were subjected to transcriptional profiling by DNA microarrays that represent 13000 human genes. Our analysis revealed specific changes in the expression of a large number of cell surface antigens including molecules involved in antigen uptake and processing, cell migration and antigen presentation. Genes encoding such molecules were upregulated during DC differentiation as were genes encoding cytokines, cytokine receptors, chemokines and chemokine receptors. Stem cell genes and genes related to the multilineage differentiation potential and proliferative state of progenitor cells were downregulated. Our analysis also provides information on the expression profiles of transcriptional regulators such as the NF-kappaB/rel and STAT transcription factors. Interestingly, NF-kappaB/rel factors were found to be expressed in both progenitor cells and DC at similar levels and were induced by TNFalpha. In contrast, expression of STAT factors increased during DC differentiation and their expression was virtually unaffected by TNFalpha.

    更新日期:2019-11-01
  • Gamma-tubulin distribution during cortical microtubule reorganization at the M/G1 interface in tobacco BY-2 cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-02-27
    Fumi Kumagai,Toshiyuki Nagata,Natsuko Yahara,Yohsuke Moriyama,Tetsuya Horio,Kuniko Naoi,Takashi Hashimoto,Takashi Murata,Seiichiro Hasezawa

    Cortical microtubules are considered to regulate the direction of cellulose microfibril deposition. Despite their significant role in determining cell morphology, cortical microtubules completely disappear from the cell cortex during M phase and become reorganized at G1 phase. The mechanism by which these microtubules become properly formed again is, however, still unclear. We have proposed that the origin of cortical microtubules is on the daughter nuclear surface, but further cortical microtubule reorganization occurs at the cell cortex. Hence it is probable that the locations of microtubule organizing centers (MTOCs) are actively changing. However, the actual MTOC sites of cortical microtubules were not clearly determined. In this paper, we have examined the distribution of gamma-tubulin, one of the key molecules of MTOCs in various organisms, during cortical microtubule reorganization using both immunofluorescence and a GFP reporter system. Using a monoclonal antibody (clone G9) that recognizes highly conserved residues in y-tubulin, y-tubulin was found to be constitutively expressed and to be clearly localized to microtubule structures, such as the preprophase bands, spindles, and phragmoplasts, specific to each cell cycle stage. This distribution pattern was confirmed by the GFP reporter system. During cortical microtubule reorganization at the M to G1 transition phase, gamma-tubulin first accumulated at the daughter nuclear surfaces, and then seemed to spread onto the cell cortex along with microtubules elongating from the daughter nuclei. Based on the results, it was confirmed that daughter nuclear surfaces acted as origins of cortical microtubules, and that further reorganization occurred on the cell cortex.

    更新日期:2019-11-01
  • Antiapoptotic effect of interferon-alpha on hepatic stellate cells (HSC): a novel pathway of IFN-alpha signal transduction via Janus kinase 2 (JAK2) and caspase-8.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-02-27
    Bernhard Saile,Christoph Eisenbach,Hammoudeh El-Armouche,Katrin Neubauer,Giuliano Ramadori

    The hepatic stellate cell (HSC), the pericyte of the liver sinusoids belongs to the mesenchymal cells of the liver. Damaging noxae induce a transformation from the quiescent (vitamin A-storing cell) to the activated (connective tissue-producing cell) state. The balance between proapoptotic and surviving factors decides about the fate of the activated HSC. Interferon-alpha (IFN-alpha) has been shown to elicit antiproliferative and/or antifibrogenic effects in various cell types of mesenchymal origin. We therefore investigated the effect of IFN-alpha on primary cultured rat HSC in their quiescent (day 2) and activated state (day 7). IFN-alpha significantly inhibited spontaneous apoptosis in activated HSC in vitro and simultaneously inhibited cell cycle progression by inducing a G1 arrest. The effect of IFN-a is not accompanied by a modulation of CD95, CD95L, p53, p21(WAF1), p27, bcl-2, bcl-xL, bax, NFkappaB, or IkappaB gene expression. Surprisingly, the IFN-alpha effect could be abolished completely by blocking JAK2 activity or JAK2 translation. The downregulating effect of IFN-alpha on the activity of caspase-8 and caspase-3 could also be neutralized using tyrphostin AG490 or JAK-2 antisense. Taken together IFN-alpha inhibits apoptosis of activated HSC by activation of JAK2 which inhibits the caspase-8 apoptosis pathway.

    更新日期:2019-11-01
  • Mycobacteria-containing phagosomes associate less annexins I, VI, VII and XI, but not II, concomitantly with a diminished phagolysosomal fusion.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-02-27
    Maria G Pittis,Laura Muzzolin,Piero G Giulianini,Rodolfo C Garcia

    We have studied the intracellular localization of annexins I,II, VI, VII, and XI in cells containing latex beads or Mycobacterium avium at different times after ingestion in order to establish whether a correlation existed between the association of annexins to phagosomes and phagolysosomal fusion, since the intracellular survival of mycobacteria is linked to an impairment of phagosome maturation. We demonstrate an important decrease in the levels of association of annexins I, VI, VII and XI, but not II to phagosomes containing either live or killed mycobacteria compared with phagosomes containing inert latex particles. The reduced association of annexins observed was detected only on M. avium-containing phagosomes and not in other cell membrane nor in cytosolic fractions from infected cells, and was apparent from 8 hours through to 4 days after phagocytosis. These findings add elements to the present knowledge of the phagosomal modifications that accompany the survival of intracellular pathogens, suggesting that annexins I, VI, VII, and XI play a secondary role in phagosomal fusion events while annexin II does not seem to be related to the mechanism of regulation of endolysosomal fusion.

    更新日期:2019-11-01
  • The secretory beta-amyloid precursor protein is a motogen for human epidermal keratinocytes.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2003-01-30
    Gregor Kirfel,Bodo Borm,Alexander Rigort,Volker Herzog

    Cell migration is known to be triggered by constituents of the extracellular matrix such as fibronectin and by soluble mediators commonly summarized as motogens. Many growth factors such as the epidermal growth factor (EGF) have been shown to act as motogens. Recently, the secretory N-terminal portion of the beta-amyloid precursor protein (sAPP) has been identified as a keratinocyte growth factor. Hence, in this study we analysed whether sAPP stimulates also keratinocyte migration employing the stroboscopic cell motility assay. The migration velocity as well as the frequency of lamellipodia protrusion and ruffle formation were increased about two-fold thus corresponding to the effect of EGF. Using a newly developed beta1-integrin migration track assay we observed that sAPP increased the proportion of migrating keratinocytes and their directional persistence. sAPP appeared to operate synergistically with fibronectin with respect to its motogenic effect. Using a modified Boyden chamber assay we showed that sAPP besides its chemokinetic effect functions as a chemoattractant. Like EGF, sAPP exerted its motogenic effect through the activation of Rac kinase but the receptor for sAPP appears to be distinct. The results suggest that sAPP operates as a motogen in the human epidermis, where it may participate in the regulation of reepithelialization during wound healing.

    更新日期:2019-11-01
  • Selective G protein beta gamma-subunit compositions mediate phospholipase C activation in the vomeronasal organ.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-11-20
    Karin Rünnenburger,Heinz Breer,Ingrid Boekhoff

    Chemosensory neurons of the vomeronasal organ (VNO) are supposed to detect pheromones controlling social and reproductive behavior in most terrestrial vertebrates. Recent studies indicate that pheromone signaling in VNO neurons is mediated via phospholipase C (PLC) activation generating the two second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Since G alpha(i) and G alpha(o) predominantly expressed in VNO neurons are usually not involved in activating PLC, it was explored if PLC activation may be mediated by G beta gamma subunits. It was found that a scavenger for beta gamma dimers reduced the urine-induced IP3 formation in VNO preparations in a dose-dependent manner indicating a role for G beta gamma complexes. Towards an identification of the relevant G beta and G gamma subunit(s), PCR approaches as well as immunohistochemical experiments were performed. It was found that out of the five known G beta subtypes, only G beta2 was expressed in both G alpha(i) as well as G alpha(o) neurons. Experimental approaches focusing on the spatial expression profile of identified G gamma subtypes revealed that G gamma8-positive neurons are preferentially localized to the basal region of the vomeronasal epithelium, whereas G gamma2-reactive cells are restricted to the apical G alpha(i)-positive layer of the sensory epithelium. As IP3 formation induced upon stimulation with volatile urinary compounds was selectively blocked by G gamma2-specific antibodies whereas second messenger formation elicited upon stimulation with alpha2u globulin was inhibited by antibodies recognizing G gamma8, it is conceivable that PLC activation in the two populations of chemosensory VNO neurons is mediated by different G beta gamma complexes.

    更新日期:2019-11-01
  • Differences in endocytosis and intracellular sorting of ricin and viscumin in 3T3 cells.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-11-20
    Mihail Moisenovic,Alexandr Tonevitsky,Igor Agapov,Hideaki Niwa,Heinz Schewe,Jürgen Bereiter-Hahn

    Ricin and viscumin are heterodimeric protein toxins. Their A-chain is enzymatically active and removes an adenine residue from the 28S rRNA, the B-chain has lectin activity and binds to terminal galactose residues of cell surface receptors. The toxins reveal a high degree of identity in their amino acid sequences. Nevertheless, uptake into 3T3 cells occurs via different receptors and endocytotic pathways. This has been revealed by enzyme linked based analysis of ricin competition with viscumin, and by fluorochrome-labeled toxins (viscumin-FITC, ricin-Alexa 568), which were added simultaneously or separately to living cells. Then the uptake was followed by confocal laser scanning microscopy. Ricin immediately is delivered to the tubular and vesicular structures of endosomes in the perinuclear area while viscumin becomes endocytosed into small vesicles preferentially in the cell periphery. After about 60 min both these toxins may be found in tubo-vesicular structures of endosomes where the sorting process can directly be observed. The fact that this sorting takes place is a strong argument for the assumption that the toxins are bound to membrane proteins, either to their original receptors or to other proteins inside the endosomal compartment exhibiting terminal galactose residues. The toxins are biologically fully active as has been proven by binding and by toxicity experiments, thus the differences in targeting do not arise from labeling.

    更新日期:2019-11-01
  • TGFbeta1 -mediated epithelial to mesenchymal transition is accompanied by invasion in the SiHa cell line.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-09-18
    Jae Youn Yi,Kyu Chung Hur,EunAh Lee,Yong Jae Jin,Carlos L Arteaga,Young Sook Son

    It has recently been suggested by several investigators that the epithelial-mesenchymal transition-inducing capacity of TGFbetas contributes to invasive transition of tumors at later stages of carcinogenesis. In the present study, we examined the possibility of TGFbeta1-stimulated epithelial-mesenchymal transition in SiHa cell line, detailed molecular events in the process, and its possible contribution to the invasive transition of tumors. TGFbeta1-induced epithelial-mesenchymal transition of SiHa cells was based on morphological and biochemical criteria; actin stress fiber formation, focal translocalization of integrin alphav, talin, and vinculin, fibronectin-based matrix assembly at the cell periphery, and translocalization and down-regulation of E-cadherin. TGFbeta1 also stimulated surface expression of integrin alphavbeta3 and FAK activation. Focal translocalization of integrin alphav preceded actin reorganization and fibronectin matrix assembly, and functional blocking of the integrin suppressed actin stress fiber formation. Furthermore, induction of actin reorganization and fibronectin matrix assembly by TGFbeta1 were shown to be mutually independent events. These changes were irreversible because 5 minutes pulse exposure to TGFbeta1 was sufficient to stimulate progress of actin reorganization and fibronectin matrix assembly. In further studies with raft culture, TGFbeta1 was found to stimulate invasion of SiHa cells into a type I collagen gel matrix. In conclusion, TGFbeta1 stimulated epithelial-mesenchymal transition of SiHa cells, indicating a positive role in the invasive transition of tumors.

    更新日期:2019-11-01
  • Targeting of carbonic anhydrase IV to plasma membranes is altered in cultured human pancreatic duct cells expressing a mutated (deltaF508) CFTR.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-09-18
    Marjorie Fanjul,Christel Salvador,Laetitia Alvarez,Sylvie Cantet,Etienne Hollande

    Human pancreatic duct cells secrete HCO3- ions mediated by a Cl-/HCO3- exchanger and a HCO3- channel that may be a carbonic anhydrase IV (CA IV) in a channel-like conformation. This secretion is regulated by CFTR (Cystic Fibrosis Transmembrane conductance Regulator). In CF cells homozygous for the deltaF508 mutation, the defect in targeting of CFTR to plasma membranes leads to a disruption in the secretion of Cl- and HCO3 ions along with a defective targeting of other proteins. In this study, we analyzed the targeting of membrane CA IV in the human pancreatic duct cell line CFPAC-1, which expresses a deltaF508 CFTR, and in the same cells transfected with the wild-type CFTR (CFPAC-PLJ-CFTR6) or with the vector alone (CFPAC-PLJ6). The experiments were conducted on cells in the stationary phase the polarized state of which was checked by the distribution of occludin and actin. We show that both cell lines express a 35-kDa CA IV at comparable levels. Analysis of fractions of plasma membranes purified on a Percoll gradient evidenced lower levels of CA IV (8-fold) in the CFPAC-1 than in the CFPAC-PLJ-CFTR6 cells. Quantitative analyses showed that 6- to 10-fold fewer cells in the CFPAC-1 cell line exhibited membrane CA IV-immunoreactivity than in the CFPAC-PLJ-CFTR6 cell line. Taken together, these results suggest that the targeting of CA IV to apical plasma membranes is impaired in CFPAC-1 cells. CA IV/gamma-adaptin double labeling demonstrated the presence of CA IV in the trans-Golgi network (TGN) of numerous CFPAC-1 cells, indicating that trafficking was disrupted on the exit face of the TGN. The retargeting of CA IV observed in CFPAC-PLJ-CFTR6 cells points to a relationship between the traffic of CFTR and CA IV. On the basis of these observations, we propose that the absence of CA IV in apical plasma membranes due to the impairment in targeting in cells expressing a deltaAF508 CFTR largely contributes to the disruption in HCO3- secretion in CF epithelia.

    更新日期:2019-11-01
  • Meeting report: growth factors in development, repair and disease.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-08-06
    Susanne Braun,Ulrich auf dem Keller,Hans-Dietmar Beer,Monika Krampert,Mischa Müller,Silke Werner,Clive Dickson,Sabine Werner

    更新日期:2019-11-01
  • Subtype-specific neuronal differentiation of PC12 cells transfected with alpha2-adrenergic receptors.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-07-13
    Stavros Taraviras,Tuire Olli-Lähdesmäki,Anastasios Lymperopoulos,Despina Charitonidou,Manolis Mavroidis,Jaana Kallio,Mika Scheinin,Christodoulos Flordellis

    Cells of the PC12 rat pheochromocytoma cell line acquire characteristics of sympathetic neurons under appropriate treatment. Stably transfected PC12 cells expressing individual alpha2-adrenergic receptor (alpha2-AR) subtypes were used to assess the role of alpha2-ARs in neuronal differentiation and to characterise the signalling pathways activated by the alpha2-AR agonist epinephrine in these cells. The effects of alpha2-AR activation were compared with the differentiating action and the signalling mechanisms of nerve growth factor (NGF). Epinephrine induced neuronal differentiation of PC12alpha2 cells through alpha2-AR activation in a subtype-dependent manner, internalization of all human alpha2-AR subtypes, and activation of mitogen-activated protein kinase (MAPK) and the serine-threonine protein kinase Akt. Epinephrine and NGF showed synergism in their differentiating effects. The MAPK kinase (MEK-1) inhibitor PD 98059 abolished the differentiating effect of epinephrine indicating that the differentiation is dependent on MAPK activation. Activating protein-1 (AP-1) DNA-binding activity was increased after epinephrine treatment in all three PC12alpha2 subtype clones. Evaluation of the potential physiological consequences of these findings requires further studies on endogenously expressed alpha2-ARs in neuronal cells.

    更新日期:2019-11-01
  • Human Krüppel-like factor5/KLF5: synergy with NF-kappaB/Rel factors and expression in human skin and hair follicles.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-07-13
    Inderpreet Sur,A Birgitte Undén,Rune Toftgård

    In this report we describe the identification of Krüppel-like factor 5 (KLF5/BTEB2) in a yeast one-hybrid screen using a keratinocyte-specific, NF-kappaB binding site as bait. The KLF5 cDNA encodes a larger protein of 457 aa rather than the earlier reported protein of 209 aa. The full-length KLF5 functions as a transactivator in HepG2 cells, and the stimulation of cells with 12-0-tetradecanoylphorbol-13-acetate (TPA) can modulate its transcriptional activity. Overexpression of KLF5 leads to an increase in the TPA response from VLTRE, a TPA-inducible enhancer element that shows keratinocyte specificity with respect to Rel/NF-kappaB binding. The KLF5-mediated transcriptional increase is not observed in the presence of overexpressed NF-kappaB inhibitor, IkappaBalpha. Cotransfection of KLF5 and the p65 subunit of NF-kappaB, results in a synergistic transactivation of the VLTRE-luciferase reporter. The KLF5 mRNA and the protein is expressed in keratinocytes and throughout the adult human epidermis. Its expression is especially strong in the matrix and the inner root sheath cuticle layer of the hair follicle, sebaceous glands and sweat glands. Considering the TPA-responsiveness and expression pattern, we propose that KLF5 like another member of its family KLF4/GKLF may play an important role in skin morphogenesis and carcinogenesis potentially via its interaction with NF-kappaB factors.

    更新日期:2019-11-01
  • P53-dependent expression of the stress-induced protein (SIP).
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-06-18
    Richard Tomasini,Amina Azizi Samir,Marie-Josèphe Pebusque,Ezequiel L Calvo,Serena Totaro,Jean Charles Dagorn,Nelson J Dusetti,Juan L Iovanna

    The mouse stress-induced protein (SIP) mRNA is activated in the pancreas with acute pancreatitis and in several cell lines in response to various stress agents. The SIP gene is alternatively spliced, generating two proteins (SIP'8 and SIP27). Both proteins, located mainly in the nucleus, promote cell death when overexpressed in vitro. We show that induction by stress agents of the expression of SIP18 and SIP27 mRNAs, observed in human- and mouse-derived cell lines, is absent from cells with deleted, mutated or inactive p53, suggesting that regulation of SIP gene expression is dependent on p53. That hypothesis is consistent with the presence of a functional p53-response element within the promoter region of the mouse SIP gene and confirmed by the induction of SIP mRNA expression in mouse embryo fibroblasts upon activation of a p53-dependent pathway by transfection with rasV12 or rasV12/E1A. In conclusion, SIP being a proapoptotic gene induced through p53 activation could be a stress-induced gene with antitumour properties.

    更新日期:2019-11-01
  • Perturbation of gastric mucosa in mice expressing the temperature-sensitive mutant of SV40 large T antigen. Potential for establishment of an immortalised parietal cell line.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-06-18
    L Ann Stewart,Ian R van Driel,Paul A Gleeson

    Gastric parietal cells have a unique secretory membrane system that undergoes a profound transformation when the parietal cell is stimulated to secrete acid. Understanding this process has been hindered by the lack of an immortalised parietal cell line. Here we have explored a strategy for the development of a parietal cell line by the generation of transgenic mice bearing the temperature-sensitive mutant of the SV40 large T antigen (SV40 tsA58) under the control of the regulatory sequences of the gastric H+/K+ ATPase beta-subunit (H/Kbeta-tsA58). Three H/ Kbeta-tsA58 transgenic mouse lines were established, namely 218, 224 and 228, all of which expressed the tsA58 T antigen in the gastric mucosa. Unexpectedly, the gastric mucosae of all lines were hypertrophic indicating that the temperature-sensitive large T antigen was partially active at 37 degrees C. Immunofluorescence together with light and electron microscopic studies revealed that mature parietal and zymogenic cells were absent in H/Kbeta-tsA58 transgenic lines 218 and 224, and small undifferentiated cells were the dominant cell type in the gastric units. On the other hand, a few mature parietal cells were detected in line 228 together with an increased proportion of undifferentiated cells and, normally rare, pre-parietal cells. As line 228 represented a rich source of pre-parietal cells, gastric cells from line 228 were isolated and cultured at 33 degrees C, the permissive temperature for tsA58. Gastric epithelial cells, expressing the T antigen, were maintained in culture for over 6 weeks. Upon a temperature shift to 39 C the cultured gastric cells developed characteristics of differentiated parietal cells, including the presence of a nascent canaliculus and dramatically increased production of the gastric H+/K+ ATPase beta-subunit. Therefore, this system shows the potential to generate an immature parietal cell line that can be induced to differentiate in vitro.

    更新日期:2019-11-01
  • The SNAREs vti1a and vti1b have distinct localization and SNARE complex partners.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-06-18
    Vera Kreykenbohm,Dirk Wenzel,Wolfram Antonin,Vadim Atlachkine,Gabriele Fischer von Mollard

    Two mammalian proteins, vtila and vtilb, are homologous to the yeast Q-SNARE Vtilp which is part of several SNARE complexes in different transport steps. In vitro experiments suggest distinct functions for vtila and vtilb. Here we compared the subcellular localization of endogenous vtila and vtilb by immunofluorescence and immuno-electron microscopy. Both proteins had a distinct but overlapping localization. vtila was found predominantly on the Golgi and the TGN, vtilb mostly on tubules and vesicles in the TGN area and on endosomes. vti1a coimmunoprecipitated with VAMP-4, syntaxin 6, and syntaxin 16. These four SNAREs could assemble into a SNARE complex of conserved structure because one SNARE motif of each subgroup is present. vtila-beta, VAMP-4, syntaxin 6, and syntaxin 16 are coenriched with small synaptic vesicles and with clathrin-coated vesicles isolated from rat brain synaptosomes. Therefore, this SNARE complex may have a role in synaptic vesicle biogenesis or recycling.

    更新日期:2019-11-01
  • CALbeta, a novel lipocalin associated with chondrogenesis and inflammation.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-06-18
    Aldo Pagano,Paolo Giannoni,Adriana Zambotti,Nadia Randazzo,Barbara Zerega,Ranieri Cancedda,Beatrice Dozin

    We have previously demonstrated the association of the chicken lipocalin Ex-FABP with cartilage formation and inflammatory responses as a marker of these processes (Descalzi Cancedda et al., Biochim. Biophys. Acta 1482, 127-135, 2000). Here we report the isolation and characterisation of a new lipocalin gene laying upstream the Ex-FABP, thus representing the second member of a possible genomic cluster. This gene contains an open reading frame coding for a polypeptide of about 19 kDa. The amino-acid sequence revealed a conserved lipocalin secondary structure. Tissue distribution of the protein in developing embryos showed a preferential expression in the heart although mRNA transcripts could be detected also in muscle, lung and liver. The lowest expression was observed in the stomach, brain and skin. During endochondral formation of long bones, the protein is differentially distributed, as the transcripts, evidenced in the tibia by in situ hybridisation, are present in the hypertrophic cone of the cartilage and mostly absent in the area of the proliferating chondrocytes. Such developmental regulation was observed also in vitro in cultured chondrocytes where the transcripts were barely detectable in dedifferentiated cells but highly expressed in hypertrophic chondrocytes. The protein was also significantly induced by lipopolysaccharide stimulation of chondrocytes, indicating a possible involvement in acute phase response. Raising specific antibodies in a rabbit allowed validating, at the protein level, all the transcriptional data. Moreover, we gained evidence that the protein is actively secreted in the extracellular matrix surrounding the chondrocytes. Because of its peculiar expression in cartilage, this new protein was named chondrogenesis-associated lipocalin beta (thereafter referred to as CAL beta). The close similarity between Ex-FABP and CAL beta expression patterns supports the hypothesis of a genomic organisation in a cluster where both genes could be co-ordinately regulated.

    更新日期:2019-11-01
  • Identification of centaurin-alpha2: a phosphatidylinositide-binding protein present in fat, heart and skeletal muscle.
    Eur. J. Cell Biol. (IF 3.024) Pub Date : 2002-05-23
    Paul Whitley,Alison M Gibbard,Françoise Koumanov,Susan Oldfield,Elaine E Kilgour,Glenn D Prestwich,Geoffrey D Holman

    We describe here the cloning, expression and characterisation of centaurin-alpha2 from a rat adipocyte cDNA library. The centaurin-alpha2 cDNA contains an open reading frame, which codes for a protein of 376 amino acids with predicted mass of 43.5 kDa. Centaurin-alpha2 shares 51-59% identity with centaurin-alpha1 proteins and has the same domain organisation, consisting of a predicted N-terminal ArfGAP domain followed by two successive pleckstrin homology domains. Despite the sequence similarity, there are a number of notable differences between the previously characterised centaurin-alpha1 proteins and the newly described centaurin-alpha2: (i) in vitro lipid binding experiments with centaurin-alpha2 do not reveal the same selectivity for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate that has been shown for centaurin-alpha; (ii) unlike centaurin-alpha1 which is expressed mainly in the brain, centaurin-alpha2 has a broad tissue distribution, being particularly abundant in fat, heart and skeletal muscle; (iii) in contrast to centaurin-alpha1 which is found in both membrane and cytosolic fractions, endogenous centaurin-alpha2 is exclusively present in the dense membrane fractions of cell extracts, suggesting a constitutive membrane association. Insulin stimulation, which stimulates phosphatidylinositol 3,4,5-trisphosphate production, does not alter the subcellular distribution of centaurin-alpha2 between adipocyte membrane fractions. This observation is consistent with the lack of specificity of centaurin-alpha2 for phosphatidylinositol 3,4,5-trisphosphate over phosphatidylinositol 4,5-bisphosphate.

    更新日期:2019-11-01
Contents have been reproduced by permission of the publishers.
导出
全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug