当前期刊: BMC Biology Go to current issue    加入关注   
显示样式:        排序: 导出
  • A straightforward approach for bioorthogonal labeling of proteins and organelles in live mammalian cells, using a short peptide tag
    BMC Biol. (IF 6.723) Pub Date : 2020-01-14
    Inbar Segal; Dikla Nachmias; Andres Konig; Ariel Alon; Eyal Arbely; Natalie Elia

    In the high-resolution microscopy era, genetic code expansion (GCE)-based bioorthogonal labeling offers an elegant way for direct labeling of proteins in live cells with fluorescent dyes. This labeling approach is currently not broadly used in live-cell applications, partly because it needs to be adjusted to the specific protein under study. We present a generic, 14-residue long, N-terminal tag for GCE-based labeling of proteins in live mammalian cells. Using this tag, we generated a library of GCE-based organelle markers, demonstrating the applicability of the tag for labeling a plethora of proteins and organelles. Finally, we show that the HA epitope, used as a backbone in our tag, may be substituted with other epitopes and, in some cases, can be completely removed, reducing the tag length to 5 residues. The GCE-tag presented here offers a powerful, easy-to-implement tool for live-cell labeling of cellular proteins with small and bright probes.

  • Spatiotemporal mapping of RNA editing in the developing mouse brain using in situ sequencing reveals regional and cell-type-specific regulation
    BMC Biol. (IF 6.723) Pub Date : 2020-01-14
    Elin Lundin; Chenglin Wu; Albin Widmark; Mikaela Behm; Jens Hjerling-Leffler; Chammiran Daniel; Marie Öhman; Mats Nilsson

    Adenosine-to-inosine (A-to-I) RNA editing is a process that contributes to the diversification of proteins that has been shown to be essential for neurotransmission and other neuronal functions. However, the spatiotemporal and diversification properties of RNA editing in the brain are largely unknown. Here, we applied in situ sequencing to distinguish between edited and unedited transcripts in distinct regions of the mouse brain at four developmental stages, and investigate the diversity of the RNA landscape. We analyzed RNA editing at codon-altering sites using in situ sequencing at single-cell resolution, in combination with the detection of individual ADAR enzymes and specific cell type marker transcripts. This approach revealed cell-type-specific regulation of RNA editing of a set of transcripts, and developmental and regional variation in editing levels for many of the targeted sites. We found increasing editing diversity throughout development, which arises through regional- and cell type-specific regulation of ADAR enzymes and target transcripts. Our single-cell in situ sequencing method has proved useful to study the complex landscape of RNA editing and our results indicate that this complexity arises due to distinct mechanisms of regulating individual RNA editing sites, acting both regionally and in specific cell types.

  • Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers
    BMC Biol. (IF 6.723) Pub Date : 2020-01-15
    Kyerl Park; Jaedong Lee; Hyun Jae Jang; Blake A. Richards; Michael M. Kohl; Jeehyun Kwag

    Abnormal accumulation of amyloid β1–42 oligomers (AβO1–42), a hallmark of Alzheimer’s disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AβO1–42 affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AβO1–42-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP. Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AβO1–42 causes synapse-specific dysfunction in PV and SST interneurons. AβO1–42 selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AβO1–42 selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AβO1–42-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction. Our results reveal that AβO1–42 causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer’s disease.

  • Correction to: Common ancestry of heterodimerizing TALE homeobox transcription factors across Metazoa and Archaeplastida
    BMC Biol. (IF 6.723) Pub Date : 2020-01-09
    Sunjoo Joo; Ming Hsiu Wang; Gary Lui; Jenny Lee; Andrew Barnas; Eunsoo Kim; Sebastian Sudek; Alexandra Z. Worden; Jae-Hyeok Lee

    Upon publication of the original article [1], it was noticed that Alexandra Z. Worden’s affiliation is not complete. The full affiliation information for Alexandra Z. Worden is can be found below and in the complete affiliation list of this Correction article.

  • Long live the king: chromosome-level assembly of the lion (Panthera leo) using linked-read, Hi-C, and long-read data
    BMC Biol. (IF 6.723) Pub Date : 2020-01-08
    Ellie E. Armstrong; Ryan W. Taylor; Danny E. Miller; Christopher B. Kaelin; Gregory S. Barsh; Elizabeth A. Hadly; Dmitri Petrov

    The lion (Panthera leo) is one of the most popular and iconic feline species on the planet, yet in spite of its popularity, the last century has seen massive declines for lion populations worldwide. Genomic resources for endangered species represent an important way forward for the field of conservation, enabling high-resolution studies of demography, disease, and population dynamics. Here, we present a chromosome-level assembly from a captive African lion from the Exotic Feline Rescue Center (Center Point, IN) as a resource for current and subsequent genetic work of the sole social species of the Panthera clade. Our assembly is composed of 10x Genomics Chromium data, Dovetail Hi-C, and Oxford Nanopore long-read data. Synteny is highly conserved between the lion, other Panthera genomes, and the domestic cat. We find variability in the length of runs of homozygosity across lion genomes, indicating contrasting histories of recent and possibly intense inbreeding and bottleneck events. Demographic analyses reveal similar ancient histories across all individuals during the Pleistocene except the Asiatic lion, which shows a more rapid decline in population size. We show a substantial influence on the reference genome choice in the inference of demographic history and heterozygosity. We demonstrate that the choice of reference genome is important when comparing heterozygosity estimates across species and those inferred from different references should not be compared to each other. In addition, estimates of heterozygosity or the amount or length of runs of homozygosity should not be taken as reflective of a species, as these can differ substantially among individuals. This high-quality genome will greatly aid in the continuing research and conservation efforts for the lion, which is rapidly moving towards becoming a species in danger of extinction.

  • The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments
    BMC Biol. (IF 6.723) Pub Date : 2020-01-06
    Heike Rampelt; Iva Sucec; Beate Bersch; Patrick Horten; Inge Perschil; Jean-Claude Martinou; Martin van der Laan; Nils Wiedemann; Paul Schanda; Nikolaus Pfanner

    The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.

  • Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies
    BMC Biol. (IF 6.723) Pub Date : 2020-01-02
    Robert M. Waterhouse; Sergey Aganezov; Yoann Anselmetti; Jiyoung Lee; Livio Ruzzante; Maarten J. M. F. Reijnders; Romain Feron; Sèverine Bérard; Phillip George; Matthew W. Hahn; Paul I. Howell; Maryam Kamali; Sergey Koren; Daniel Lawson; Gareth Maslen; Ashley Peery; Adam M. Phillippy; Maria V. Sharakhova; Eric Tannier; Maria F. Unger; Simo V. Zhang; Max A. Alekseyev; Nora J. Besansky; Cedric Chauve; Scott J. Emrich; Igor V. Sharakhov

    New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from ‘finished’. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies. We evaluated and employed 3 gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies, we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: 6 with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and 3 with new assemblies based on re-scaffolding or long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: 7 for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further 7 with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi. Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our evaluations show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.

  • Charting the diversity of uncultured viruses of Archaea and Bacteria
    BMC Biol. (IF 6.723) Pub Date : 2019-12-29
    F. H. Coutinho; R. A. Edwards; F. Rodríguez-Valera

    Viruses of Archaea and Bacteria are among the most abundant and diverse biological entities on Earth. Unraveling their biodiversity has been challenging due to methodological limitations. Recent advances in culture-independent techniques, such as metagenomics, shed light on the unknown viral diversity, revealing thousands of new viral nucleotide sequences at an unprecedented scale. However, these novel sequences have not been properly classified and the evolutionary associations between them were not resolved. Here, we performed phylogenomic analysis of nearly 200,000 viral nucleotide sequences to establish GL-UVAB: Genomic Lineages of Uncultured Viruses of Archaea and Bacteria. The pan-genome content of the identified lineages shed light on some of their infection strategies, potential to modulate host physiology, and mechanisms to escape host resistance systems. Furthermore, using GL-UVAB as a reference database for annotating metagenomes revealed elusive habitat distribution patterns of viral lineages and environmental drivers of community composition. These findings provide insights about the genomic diversity and ecology of viruses of prokaryotes. The source code used in these analyses is freely available at https://sourceforge.net/projects/gluvab/.

  • Functional architecture underlying binocular coordination of eye position and velocity in the larval zebrafish hindbrain
    BMC Biol. (IF 6.723) Pub Date : 2019-12-29
    Christian Brysch; Claire Leyden; Aristides B. Arrenberg

    The oculomotor integrator (OI) in the vertebrate hindbrain transforms eye velocity input into persistent position coding output, which plays a crucial role in retinal image stability. For a mechanistic understanding of the integrator function and eye position control, knowledge about the tuning of the OI and other oculomotor nuclei is needed. Zebrafish are increasingly used to study integrator function and sensorimotor circuits, yet the precise neuronal tuning to motor variables remains uncharacterized. Here, we recorded cellular calcium signals while evoking monocular and binocular optokinetic eye movements at different slow-phase eye velocities. Our analysis reveals the anatomical distributions of motoneurons and internuclear neurons in the nucleus abducens as well as those of oculomotor neurons in caudally adjacent hindbrain volumes. Each neuron is tuned to eye position and/or velocity to variable extents and is only activated after surpassing particular eye position and velocity thresholds. While the abducens (rhombomeres 5/6) mainly codes for eye position, in rhombomeres 7/8, a velocity-to-position coding gradient exists along the rostro-caudal axis, which likely corresponds to the oculomotor structures storing velocity and position, and is in agreement with a feedforward mechanism of persistent activity generation. Position encoding neurons are recruited at eye position thresholds distributed across the behaviourally relevant dynamic range, while velocity-encoding neurons have more centred firing thresholds for velocity. In the abducens, neurons coding exclusively for one eye intermingle with neurons coding for both eyes. Many of these binocular neurons are preferentially active during conjugate eye movements and less active during monocular eye movements. This differential recruitment during monocular versus conjugate tasks represents a functional diversification in the final common motor pathway. We localized and functionally characterized the repertoire of oculomotor neurons in the zebrafish hindbrain. Our findings provide evidence for a mixed but task-specific binocular code and suggest that generation of persistent activity is organized along the rostro-caudal axis in the hindbrain.

  • Multi-species annotation of transcriptome and chromatin structure in domesticated animals
    BMC Biol. (IF 6.723) Pub Date : 2019-12-30
    Sylvain Foissac; Sarah Djebali; Kylie Munyard; Nathalie Vialaneix; Andrea Rau; Kevin Muret; Diane Esquerré; Matthias Zytnicki; Thomas Derrien; Philippe Bardou; Fany Blanc; Cédric Cabau; Elisa Crisci; Sophie Dhorne-Pollet; Françoise Drouet; Thomas Faraut; Ignacio Gonzalez; Adeline Goubil; Sonia Lacroix-Lamandé; Fabrice Laurent; Sylvain Marthey; Maria Marti-Marimon; Raphaelle Momal-Leisenring; Florence Mompart; Pascale Quéré; David Robelin; Magali San Cristobal; Gwenola Tosser-Klopp; Silvia Vincent-Naulleau; Stéphane Fabre; Marie-Hélène Pinard-Van der Laan; Christophe Klopp; Michèle Tixier-Boichard; Hervé Acloque; Sandrine Lagarrigue; Elisabetta Giuffra

    Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.

  • Joint learning improves protein abundance prediction in cancers
    BMC Biol. (IF 6.723) Pub Date : 2019-12-23
    Hongyang Li; Omer Siddiqui; Hongjiu Zhang; Yuanfang Guan

    The classic central dogma in biology is the information flow from DNA to mRNA to protein, yet complicated regulatory mechanisms underlying protein translation often lead to weak correlations between mRNA and protein abundances. This is particularly the case in cancer samples and when evaluating the same gene across multiple samples. Here, we report a method for predicting proteome from transcriptome, using a training dataset provided by NCI-CPTAC and TCGA, consisting of transcriptome and proteome data from 77 breast and 105 ovarian cancer samples. First, we establish a generic model capturing the correlation between mRNA and protein abundance of a single gene. Second, we build a gene-specific model capturing the interdependencies among multiple genes in a regulatory network. Third, we create a cross-tissue model by joint learning the information of shared regulatory networks and pathways across cancer tissues. Our method ranked first in the NCI-CPTAC DREAM Proteogenomics Challenge, and the predictive performance is close to the accuracy of experimental replicates. Key functional pathways and network modules controlling the proteomic abundance in cancers were revealed, in particular metabolism-related genes. We present a method to predict proteome from transcriptome, leveraging data from different cancer tissues to build a trans-tissue model, and suggest how to integrate information from multiple cancers to provide a foundation for further research.

  • Maternal milk and fecal microbes guide the spatiotemporal development of mucosa-associated microbiota and barrier function in the porcine neonatal gut
    BMC Biol. (IF 6.723) Pub Date : 2019-12-18
    Hongbin Liu; Xiangfang Zeng; Guolong Zhang; Chengli Hou; Ning Li; Haitao Yu; Lijun Shang; Xiaoya Zhang; Paolo Trevisi; Feiyun Yang; Zuohua Liu; Shiyan Qiao

    The early-life microbiota exerts a profound and lifelong impact on host health. Longitudinal studies in humans have been informative but are mostly based on the analysis of fecal samples and cannot shed direct light on the early development of mucosa-associated intestinal microbiota and its impact on GI function. Using piglets as a model for human infants, we assess here the succession of mucosa-associated microbiota across the intestinal tract in the first 35 days after birth. Although sharing a similar composition and predicted functional profile at birth, the mucosa-associated microbiome in the small intestine (jejunum and ileum) remained relatively stable, while that of the large intestine (cecum and colon) quickly expanded and diversified by day 35. Among detected microbial sources (milk, vagina, areolar skin, and feces of sows, farrowing crate, and incubator), maternal milk microbes were primarily responsible for the colonization of the small intestine, contributing approximately 90% bacteria throughout the first 35 days of the neonatal life. Although maternal milk microbes contributed greater than 90% bacteria to the large intestinal microbiota of neonates upon birth, their presence gradually diminished, and they were replaced by maternal fecal microbes by day 35. We found strong correlations between the relative abundance of specific mucosa-associated microbes, particularly those vertically transmitted from the mother, and the expression levels of multiple intestinal immune and barrier function genes in different segments of the intestinal tract. We revealed spatially specific trajectories of microbial colonization of the intestinal mucosa in the small and large intestines, which can be primarily attributed to the colonization by vertically transmitted maternal milk and intestinal microbes. Additionally, these maternal microbes may be involved in the establishment of intestinal immune and barrier functions in neonates. Our findings strengthen the notion that studying fecal samples alone is insufficient to fully understand the co-development of the intestinal microbiota and immune system and suggest the possibility of improving neonatal health through the manipulation of maternal microbiota.

  • Crossing fitness valleys via double substitutions within codons
    BMC Biol. (IF 6.723) Pub Date : 2019-12-16
    Frida Belinky; Itamar Sela; Igor B. Rogozin; Eugene V. Koonin

    Single nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases potentially could alleviate the deleterious effect of single substitutions, making them subject to positive selection. To elucidate the effects of selection on double substitutions in all codons, it is critical to differentiate selection from mutational biases. We addressed the evolutionary regimes of within-codon double substitutions in 37 groups of closely related prokaryotic genomes from diverse phyla by comparing the fractions of double substitutions within codons to those of the equivalent double S substitutions in adjacent codons. Under the assumption that substitutions occur one at a time, all within-codon double substitutions can be represented as “ancestral-intermediate-final” sequences (where “intermediate” refers to the first single substitution and “final” refers to the second substitution) and can be partitioned into four classes: (1) SS, S intermediate–S final; (2) SN, S intermediate–N final; (3) NS, N intermediate–S final; and (4) NN, N intermediate–N final. We found that the selective pressure on the second substitution markedly differs among these classes of double substitutions. Analogous to single S (synonymous) substitutions, SS double substitutions evolve neutrally, whereas analogous to single N (non-synonymous) substitutions, SN double substitutions are subject to purifying selection. In contrast, NS show positive selection on the second step because the original amino acid is recovered. The NN double substitutions are heterogeneous and can be subject to either purifying or positive selection, or evolve neutrally, depending on the amino acid similarity between the final or intermediate and the ancestral states. The results of the present, comprehensive analysis of the evolutionary landscape of within-codon double substitutions reaffirm the largely conservative regime of protein evolution. However, the second step of a double substitution can be subject to positive selection when the first step is deleterious. Such positive selection can result in frequent crossing of valleys on the fitness landscape.

  • SATB1 establishes ameloblast cell polarity and regulates directional amelogenin secretion for enamel formation
    BMC Biol. (IF 6.723) Pub Date : 2019-12-13
    Yan Zhang; Liwei Zheng; Michael Le; Yukiko Nakano; Barry Chan; Yulei Huang; Parisa Moravedje Torbaty; Yoshinori Kohwi; Ralph Marcucio; Stefan Habelitz; Pamela K. Den Besten; Terumi Kohwi-Shigematsu

    Polarity is necessary for epithelial cells to perform distinct functions at their apical and basal surfaces. Oral epithelial cell-derived ameloblasts at secretory stage (SABs) synthesize large amounts of enamel matrix proteins (EMPs), largely amelogenins. EMPs are unidirectionally secreted into the enamel space through their apical cytoplasmic protrusions, or Tomes’ processes (TPs), to guide the enamel formation. Little is known about the transcriptional regulation underlying the establishment of cell polarity and unidirectional secretion of SABs. The higher-order chromatin architecture of eukaryotic genome plays important roles in cell- and stage-specific transcriptional programming. A genome organizer, special AT-rich sequence-binding protein 1 (SATB1), was discovered to be significantly upregulated in ameloblasts compared to oral epithelial cells using a whole-transcript microarray analysis. The Satb1−/− mice possessed deformed ameloblasts and a thin layer of hypomineralized and non-prismatic enamel. Remarkably, Satb1−/− ameloblasts at the secretory stage lost many morphological characteristics found at the apical surface of wild-type (wt) SABs, including the loss of Tomes’ processes, defective inter-ameloblastic adhesion, and filamentous actin architecture. As expected, the secretory function of Satb1−/− SABs was compromised as amelogenins were largely retained in cells. We found the expression of epidermal growth factor receptor pathway substrate 8 (Eps8), a known regulator for actin filament assembly and small intestinal epithelial cytoplasmic protrusion formation, to be SATB1 dependent. In contrast to wt SABs, EPS8 could not be detected at the apical surface of Satb1−/− SABs. Eps8 expression was greatly reduced in small intestinal epithelial cells in Satb1−/− mice as well, displaying defective intestinal microvilli. Our data show that SATB1 is essential for establishing secretory ameloblast cell polarity and for EMP secretion. In line with the deformed apical architecture, amelogenin transport to the apical secretory front and secretion into enamel space were impeded in Satb1−/− SABs resulting in a massive cytoplasmic accumulation of amelogenins and a thin layer of hypomineralized enamel. Our studies strongly suggest that SATB1-dependent Eps8 expression plays a critical role in cytoplasmic protrusion formation in both SABs and in small intestines. This study demonstrates the role of SATB1 in the regulation of amelogenesis and the potential application of SATB1 in ameloblast/enamel regeneration.

  • Extracting physiological information in experimental biology via Eulerian video magnification
    BMC Biol. (IF 6.723) Pub Date : 2019-12-12
    Henrik Lauridsen; Selina Gonzales; Daniela Hedwig; Kathryn L. Perrin; Catherine J. A. Williams; Peter H. Wrege; Mads F. Bertelsen; Michael Pedersen; Jonathan T. Butcher

    Videographic material of animals can contain inapparent signals, such as color changes or motion that hold information about physiological functions, such as heart and respiration rate, pulse wave velocity, and vocalization. Eulerian video magnification allows the enhancement of such signals to enable their detection. The purpose of this study is to demonstrate how signals relevant to experimental physiology can be extracted from non-contact videographic material of animals. We applied Eulerian video magnification to detect physiological signals in a range of experimental models and in captive and free ranging wildlife. Neotenic Mexican axolotls were studied to demonstrate the extraction of heart rate signal of non-embryonic animals from dedicated videographic material. Heart rate could be acquired both in single and multiple animal setups of leucistic and normally colored animals under different physiological conditions (resting, exercised, or anesthetized) using a wide range of video qualities. Pulse wave velocity could also be measured in the low blood pressure system of the axolotl as well as in the high-pressure system of the human being. Heart rate extraction was also possible from videos of conscious, unconstrained zebrafish and from non-dedicated videographic material of sand lizard and giraffe. This technique also allowed for heart rate detection in embryonic chickens in ovo through the eggshell and in embryonic mice in utero and could be used as a gating signal to acquire two-phase volumetric micro-CT data of the beating embryonic chicken heart. Additionally, Eulerian video magnification was used to demonstrate how vocalization-induced vibrations can be detected in infrasound-producing Asian elephants. Eulerian video magnification provides a technique to extract inapparent temporal signals from videographic material of animals. This can be applied in experimental and comparative physiology where contact-based recordings (e.g., heart rate) cannot be acquired.

  • Transcriptome resilience predicts thermotolerance in Caenorhabditis elegans
    BMC Biol. (IF 6.723) Pub Date : 2019-12-10
    Katharina Jovic; Jacopo Grilli; Mark G. Sterken; Basten L. Snoek; Joost A. G. Riksen; Stefano Allesina; Jan E. Kammenga

    The detrimental effects of a short bout of stress can persist and potentially turn lethal, long after the return to normal conditions. Thermotolerance, which is the capacity of an organism to withstand relatively extreme temperatures, is influenced by the response during stress exposure, as well as the recovery process afterwards. While heat-shock response mechanisms have been studied intensively, predicting thermal tolerance remains a challenge. Here, we use the nematode Caenorhabditis elegans to measure transcriptional resilience to heat stress and predict thermotolerance. Using principal component analysis in combination with genome-wide gene expression profiles collected in three high-resolution time series during control, heat stress, and recovery conditions, we infer a quantitative scale capturing the extent of stress-induced transcriptome dynamics in a single value. This scale provides a basis for evaluating transcriptome resilience, defined here as the ability to depart from stress-expression dynamics during recovery. Independent replication across multiple highly divergent genotypes reveals that the transcriptional resilience parameter measured after a spike in temperature is quantitatively linked to long-term survival after heat stress. Our findings imply that thermotolerance is an intrinsic property that pre-determines long-term outcome of stress and can be predicted by the transcriptional resilience parameter. Inferring the transcriptional resilience parameters of higher organisms could aid in evaluating rehabilitation strategies after stresses such as disease and trauma.

  • Temperature-dependent regulation of upstream open reading frame translation in S. cerevisiae
    BMC Biol. (IF 6.723) Pub Date : 2019-12-06
    Shardul D. Kulkarni; Fujun Zhou; Neelam Dabas Sen; Hongen Zhang; Alan G. Hinnebusch; Jon R. Lorsch

    Translation of an mRNA in eukaryotes starts at an AUG codon in most cases, but near-cognate codons (NCCs) such as UUG, ACG, and AUU can also be used as start sites at low levels in Saccharomyces cerevisiae. Initiation from NCCs or AUGs in the 5′-untranslated regions (UTRs) of mRNAs can lead to translation of upstream open reading frames (uORFs) that might regulate expression of the main ORF (mORF). Although there is some circumstantial evidence that the translation of uORFs can be affected by environmental conditions, little is known about how it is affected by changes in growth temperature. Using reporter assays, we found that changes in growth temperature can affect translation from NCC start sites in yeast cells, suggesting the possibility that gene expression could be regulated by temperature by altering use of different uORF start codons. Using ribosome profiling, we provide evidence that growth temperature regulates the efficiency of translation of nearly 200 uORFs in S. cerevisiae. Of these uORFs, most that start with an AUG codon have increased translational efficiency at 37 °C relative to 30 °C and decreased efficiency at 20 °C. For translationally regulated uORFs starting with NCCs, we did not observe a general trend for the direction of regulation as a function of temperature, suggesting mRNA-specific features can determine the mode of temperature-dependent regulation. Consistent with this conclusion, the position of the uORFs in the 5′-leader relative to the 5′-cap and the start codon of the main ORF correlates with the direction of temperature-dependent regulation of uORF translation. We have identified several novel cases in which changes in uORF translation are inversely correlated with changes in the translational efficiency of the downstream main ORF. Our data suggest that translation of these mRNAs is subject to temperature-dependent, uORF-mediated regulation. Our data suggest that alterations in the translation of specific uORFs by temperature can regulate gene expression in S. cerevisiae.

  • The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence
    BMC Biol. (IF 6.723) Pub Date : 2019-12-05
    Richard P. Meisel; Pablo J. Delclos; Judith R. Wexler

    Sex chromosome evolution is a dynamic process that can proceed at varying rates across lineages. For example, different chromosomes can be sex-linked between closely related species, whereas other sex chromosomes have been conserved for > 100 million years. Cases of long-term sex chromosome conservation could be informative of factors that constrain sex chromosome evolution. Cytological similarities between the X chromosomes of the German cockroach (Blattella germanica) and most flies suggest that they may be homologous—possibly representing an extreme case of long-term conservation. To test the hypothesis that the cockroach and fly X chromosomes are homologous, we analyzed whole-genome sequence data from cockroaches. We found evidence in both sequencing coverage and heterozygosity that a significant excess of the same genes are on both the cockroach and fly X chromosomes. We also present evidence that the candidate X-linked cockroach genes may be dosage compensated in hemizygous males. Consistent with this hypothesis, three regulators of transcription and chromatin on the fly X chromosome are conserved in the cockroach genome. Our results support our hypothesis that the German cockroach shares the same X chromosome as most flies. This may represent the convergent evolution of the X chromosome in the lineages leading to cockroaches and flies. Alternatively, the common ancestor of most insects may have had an X chromosome that resembled the extant cockroach and fly X. Cockroaches and flies diverged ∼ 400 million years ago, which would be the longest documented conservation of a sex chromosome. Cockroaches and flies have different mechanisms of sex determination, raising the possibility that the X chromosome was conserved despite the evolution of the sex determination pathway.

  • Are we there yet? The long walk towards the development of efficient symbiotic associations between nitrogen-fixing bacteria and non-leguminous crops
    BMC Biol. (IF 6.723) Pub Date : 2019-12-03
    Vânia C. S. Pankievicz; Thomas B. Irving; Lucas G. S. Maia; Jean-Michel Ané

    Nitrogen is an essential element of life, and nitrogen availability often limits crop yields. Since the Green Revolution, massive amounts of synthetic nitrogen fertilizers have been produced from atmospheric nitrogen and natural gas, threatening the sustainability of global food production and degrading the environment. There is a need for alternative means of bringing nitrogen to crops, and taking greater advantage of biological nitrogen fixation seems a logical option. Legumes are used in most cropping systems around the world because of the nitrogen-fixing symbiosis with rhizobia. However, the world's three major cereal crops—rice, wheat, and maize—do not associate with rhizobia. In this review, we will survey how genetic approaches in rhizobia and their legume hosts allowed tremendous progress in understanding the molecular mechanisms controlling root nodule symbioses, and how this knowledge paves the way for engineering such associations in non-legume crops. We will also discuss challenges in bringing these systems into the field and how they can be surmounted by interdisciplinary collaborations between synthetic biologists, microbiologists, plant biologists, breeders, agronomists, and policymakers.

  • DPF is a cell-density sensing factor, with cell-autonomous and non-autonomous functions during Dictyostelium growth and development
    BMC Biol. (IF 6.723) Pub Date : 2019-12-02
    Netra Pal Meena; Pundrik Jaiswal; Fu-Sheng Chang; Joseph Brzostowski; Alan R. Kimmel

    Cellular functions can be regulated by cell-cell interactions that are influenced by extra-cellular, density-dependent signaling factors. Dictyostelium grow as individual cells in nutrient-rich sources, but, as nutrients become depleted, they initiate a multi-cell developmental program that is dependent upon a cell-density threshold. We hypothesized that novel secreted proteins may serve as density-sensing factors to promote multi-cell developmental fate decisions at a specific cell-density threshold, and use Dictyostelium in the identification of such a factor. We show that multi-cell developmental aggregation in Dictyostelium is lost upon minimal (2-fold) reduction in local cell density. Remarkably, developmental aggregation response at non-permissive cell densities is rescued by addition of conditioned media from high-density, developmentally competent cells. Using rescued aggregation of low-density cells as an assay, we purified a single, 150-kDa extra-cellular protein with density aggregation activity. MS/MS peptide sequence analysis identified the gene sequence, and cells that overexpress the full-length protein accumulate higher levels of a development promoting factor (DPF) activity than parental cells, allowing cells to aggregate at lower cell densities; cells deficient for this DPF gene lack density-dependent developmental aggregation activity and require higher cell density for cell aggregation compared to WT. Density aggregation activity co-purifies with tagged versions of DPF and tag-affinity-purified DPF possesses density aggregation activity. In mixed development with WT, cells that overexpress DPF preferentially localize at centers for multi-cell aggregation and define cell-fate choice during cytodifferentiation. Finally, we show that DPF is synthesized as a larger precursor, single-pass transmembrane protein, with the p150 fragment released by proteolytic cleavage and ectodomain shedding. The TM/cytoplasmic domain of DPF possesses cell-autonomous activity for cell-substratum adhesion and for cellular growth. We have purified a novel secreted protein, DPF, that acts as a density-sensing factor for development and functions to define local collective thresholds for Dictyostelium development and to facilitate cell-cell communication and multi-cell formation. Regions of high DPF expression are enriched at centers for cell-cell signal-response, multi-cell formation, and cell-fate determination. Additionally, DPF has separate cell-autonomous functions for regulation of cellular adhesion and growth.

  • Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics
    BMC Biol. (IF 6.723) Pub Date : 2019-12-02
    Gillian P. McHugo; Michael J. Dover; David E. MacHugh

    Animal domestication has fascinated biologists since Charles Darwin first drew the parallel between evolution via natural selection and human-mediated breeding of livestock and companion animals. In this review we show how studies of ancient DNA from domestic animals and their wild progenitors and congeners have shed new light on the genetic origins of domesticates, and on the process of domestication itself. High-resolution paleogenomic data sets now provide unprecedented opportunities to explore the development of animal agriculture across the world. In addition, functional population genomics studies of domestic and wild animals can deliver comparative information useful for understanding recent human evolution.

  • Rapid, large-scale species discovery in hyperdiverse taxa using 1D MinION sequencing
    BMC Biol. (IF 6.723) Pub Date : 2019-11-29
    Amrita Srivathsan; Emily Hartop; Jayanthi Puniamoorthy; Wan Ting Lee; Sujatha Narayanan Kutty; Olavi Kurina; Rudolf Meier

    More than 80% of all animal species remain unknown to science. Most of these species live in the tropics and belong to animal taxa that combine small body size with high specimen abundance and large species richness. For such clades, using morphology for species discovery is slow because large numbers of specimens must be sorted based on detailed microscopic investigations. Fortunately, species discovery could be greatly accelerated if DNA sequences could be used for sorting specimens to species. Morphological verification of such “molecular operational taxonomic units” (mOTUs) could then be based on dissection of a small subset of specimens. However, this approach requires cost-effective and low-tech DNA barcoding techniques because well-equipped, well-funded molecular laboratories are not readily available in many biodiverse countries. We here document how MinION sequencing can be used for large-scale species discovery in a specimen- and species-rich taxon like the hyperdiverse fly family Phoridae (Diptera). We sequenced 7059 specimens collected in a single Malaise trap in Kibale National Park, Uganda, over the short period of 8 weeks. We discovered > 650 species which exceeds the number of phorid species currently described for the entire Afrotropical region. The barcodes were obtained using an improved low-cost MinION pipeline that increased the barcoding capacity sevenfold from 500 to 3500 barcodes per flowcell. This was achieved by adopting 1D sequencing, resequencing weak amplicons on a used flowcell, and improving demultiplexing. Comparison with Illumina data revealed that the MinION barcodes were very accurate (99.99% accuracy, 0.46% Ns) and thus yielded very similar species units (match ratio 0.991). Morphological examination of 100 mOTUs also confirmed good congruence with morphology (93% of mOTUs; > 99% of specimens) and revealed that 90% of the putative species belong to the neglected, megadiverse genus Megaselia. We demonstrate for one Megaselia species how the molecular data can guide the description of a new species (Megaselia sepsioides sp. nov.). We document that one field site in Africa can be home to an estimated 1000 species of phorids and speculate that the Afrotropical diversity could exceed 200,000 species. We furthermore conclude that low-cost MinION sequencers are very suitable for reliable, rapid, and large-scale species discovery in hyperdiverse taxa. MinION sequencing could quickly reveal the extent of the unknown diversity and is especially suitable for biodiverse countries with limited access to capital-intensive sequencing facilities.

  • The intestinal microbiota regulates host cholesterol homeostasis
    BMC Biol. (IF 6.723) Pub Date : 2019-11-27
    Tiphaine Le Roy; Emelyne Lécuyer; Benoit Chassaing; Moez Rhimi; Marie Lhomme; Samira Boudebbouze; Farid Ichou; Júlia Haro Barceló; Thierry Huby; Maryse Guerin; Philippe Giral; Emmanuelle Maguin; Nathalie Kapel; Philippe Gérard; Karine Clément; Philippe Lesnik

    Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale. We depleted the intestinal microbiota of hypercholesterolemic female Apoe−/− mice using broad-spectrum antibiotics. Measurement of plasma cholesterol levels as well as cholesterol synthesis and fluxes by complementary approaches showed that the intestinal microbiota strongly regulates plasma cholesterol level, hepatic cholesterol synthesis, and enterohepatic circulation. Moreover, transplant of the microbiota from humans harboring elevated plasma cholesterol levels to recipient mice induced a phenotype of high plasma cholesterol levels in association with a low hepatic cholesterol synthesis and high intestinal absorption pattern. Recipient mice phenotypes correlated with several specific bacterial phylotypes affiliated to Betaproteobacteria, Alistipes, Bacteroides, and Barnesiella taxa. These results indicate that the intestinal microbiota determines the circulating cholesterol level and may thus represent a novel therapeutic target in the management of dyslipidemia and cardiovascular diseases.

  • Optimized photo-stimulation of halorhodopsin for long-term neuronal inhibition
    BMC Biol. (IF 6.723) Pub Date : 2019-11-27
    Chuanqiang Zhang; Shang Yang; Tom Flossmann; Shiqiang Gao; Otto W. Witte; Georg Nagel; Knut Holthoff; Knut Kirmse

    Optogenetic silencing techniques have expanded the causal understanding of the functions of diverse neuronal cell types in both the healthy and diseased brain. A widely used inhibitory optogenetic actuator is eNpHR3.0, an improved version of the light-driven chloride pump halorhodopsin derived from Natronomonas pharaonis. A major drawback of eNpHR3.0 is related to its pronounced inactivation on a time-scale of seconds, which renders it unsuited for applications that require long-lasting silencing. Using transgenic mice and Xenopus laevis oocytes expressing an eNpHR3.0-EYFP fusion protein, we here report optimized photo-stimulation techniques that profoundly increase the stability of eNpHR3.0-mediated currents during long-term photo-stimulation. We demonstrate that optimized photo-stimulation enables prolonged hyperpolarization and suppression of action potential discharge on a time-scale of minutes. Collectively, our findings extend the utility of eNpHR3.0 to the long-lasting inhibition of excitable cells, thus facilitating the optogenetic dissection of neural circuits.

  • Peripheral cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin synthesis
    BMC Biol. (IF 6.723) Pub Date : 2019-11-26
    Yan Lin; Bin Bao; Hao Yin; Xin Wang; Airong Feng; Lin Zhao; Xianqi Nie; Nan Yang; Guo-Ping Shi; Jian Liu

    Cathepsin L and some other cathepsins have been implicated in the development of obesity in humans and mice. The functional inactivation of the proteases reduces fat accumulation during mammalian adipocyte differentiation. However, beyond degrading extracellular matrix protein fibronectin, the molecular mechanisms by which cathepsins control fat accumulation remain unclear. We now provide evidence from Caenorhabditis elegans and mouse models to suggest a conserved regulatory circuit in which peripheral cathepsin L inhibition lowers fat accumulation through promoting central serotonin synthesis. We established a C. elegans model of fat accumulation using dietary supplementation with glucose and palmitic acid. We found that nutrient supplementation elevated fat storage in C. elegans, and along with worm fat accumulation, an increase in the expression of cpl-1 was detected using real-time PCR and western blot. The functional inactivation of cpl-1 reduced fat storage in C. elegans through activating serotonin signaling. Further, knockdown of cpl-1 in the intestine and hypodermis promoted serotonin synthesis in worm ADF neurons and induced body fat loss in C. elegans via central serotonin signaling. We found a similar regulatory circuit in high-fat diet-fed mice. Cathepsin L knockout promoted fat loss and central serotonin synthesis. Intraperitoneal injection of the cathepsin L inhibitor CLIK195 similarly reduced body weight gain and white adipose tissue (WAT) adipogenesis, while elevating brain serotonin level and WAT lipolysis and fatty acid β-oxidation. These effects of inhibiting cathepsin L were abolished by intracranial injection of p-chlorophenylalanine, inhibitor of a rate-limiting enzyme for serotonin synthesis. This study reveals a previously undescribed molecular mechanism by which peripheral CPL-1/cathepsin L inhibition induces fat loss in C. elegans and mice through promoting central serotonin signaling.

  • Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species
    BMC Biol. (IF 6.723) Pub Date : 2019-11-22
    Peter J. Maughan; Rebekah Lee; Rachel Walstead; Robert J. Vickerstaff; Melissa C. Fogarty; Cory R. Brouwer; Robert R. Reid; Jeremy J. Jay; Wubishet A. Bekele; Eric W. Jackson; Nicholas A. Tinker; Tim Langdon; Jessica A. Schlueter; Eric N. Jellen

    Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat’s adaptive and food quality characteristics. The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species—including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.

  • A genetically encoded toolkit of functionalized nanobodies against fluorescent proteins for visualizing and manipulating intracellular signalling
    BMC Biol. (IF 6.723) Pub Date : 2019-05-23
    David L. Prole; Colin W. Taylor

    Intrabodies enable targeting of proteins in live cells, but generating specific intrabodies against the thousands of proteins in a proteome poses a challenge. We leverage the widespread availability of fluorescently labelled proteins to visualize and manipulate intracellular signalling pathways in live cells by using nanobodies targeting fluorescent protein tags. We generated a toolkit of plasmids encoding nanobodies against red and green fluorescent proteins (RFP and GFP variants), fused to functional modules. These include fluorescent sensors for visualization of Ca2+, H+ and ATP/ADP dynamics; oligomerising or heterodimerising modules that allow recruitment or sequestration of proteins and identification of membrane contact sites between organelles; SNAP tags that allow labelling with fluorescent dyes and targeted chromophore-assisted light inactivation; and nanobodies targeted to lumenal sub-compartments of the secretory pathway. We also developed two methods for crosslinking tagged proteins: a dimeric nanobody, and RFP-targeting and GFP-targeting nanobodies fused to complementary hetero-dimerizing domains. We show various applications of the toolkit and demonstrate, for example, that IP3 receptors deliver Ca2+ to the outer membrane of only a subset of mitochondria and that only one or two sites on a mitochondrion form membrane contacts with the plasma membrane. This toolkit greatly expands the utility of intrabodies and will enable a range of approaches for studying and manipulating cell signalling in live cells.

  • Synthetic cell division via membrane-transforming molecular assemblies
    BMC Biol. (IF 6.723) Pub Date : 2019-05-24
    Simon Kretschmer; Kristina A. Ganzinger; Henri G. Franquelim; Petra Schwille

    Reproduction, i.e. the ability to produce new individuals from a parent organism, is a hallmark of living matter. Even the simplest forms of reproduction require cell division: attempts to create a designer cell therefore should include a synthetic cell division machinery. In this review, we will illustrate how nature solves this task, describing membrane remodelling processes in general and focusing on bacterial cell division in particular. We discuss recent progress made in their in vitro reconstitution, identify open challenges, and suggest how purely synthetic building blocks could provide an additional and attractive route to creating artificial cell division machineries.

  • Q&A: Understanding the composition of behavior
    BMC Biol. (IF 6.723) Pub Date : 2019-05-29
    Sandeep Robert Datta

    Understanding the brain requires understanding behavior. New machine vision and learning techniques are poised to revolutionize our ability to analyze behaviors exhibited by animals in the laboratory. Here we describe one such method, Motion Sequencing (MoSeq), which combines three-dimensional (3D) imaging with unsupervised machine learning techniques to identify the syllables and grammar that comprise mouse body language. This Q&A situates MoSeq within the array of novel methods currently being developed for behavioral analysis, enumerates its relative strengths and weaknesses, and describes its future trajectory.

  • A global survey of arsenic-related genes in soil microbiomes
    BMC Biol. (IF 6.723) Pub Date : 2019-05-30
    Taylor K. Dunivin; Susanna Y. Yeh; Ashley Shade

    Environmental resistomes include transferable microbial genes. One important resistome component is resistance to arsenic, a ubiquitous and toxic metalloid that can have negative and chronic consequences for human and animal health. The distribution of arsenic resistance and metabolism genes in the environment is not well understood. However, microbial communities and their resistomes mediate key transformations of arsenic that are expected to impact both biogeochemistry and local toxicity. We examined the phylogenetic diversity, genomic location (chromosome or plasmid), and biogeography of arsenic resistance and metabolism genes in 922 soil genomes and 38 metagenomes. To do so, we developed a bioinformatic toolkit that includes BLAST databases, hidden Markov models and resources for gene-targeted assembly of nine arsenic resistance and metabolism genes: acr3, aioA, arsB, arsC (grx), arsC (trx), arsD, arsM, arrA, and arxA. Though arsenic-related genes were common, they were not universally detected, contradicting the common conjecture that all organisms have them. From major clades of arsenic-related genes, we inferred their potential for horizontal and vertical transfer. Different types and proportions of genes were detected across soils, suggesting microbial community composition will, in part, determine local arsenic toxicity and biogeochemistry. While arsenic-related genes were globally distributed, particular sequence variants were highly endemic (e.g., acr3), suggesting dispersal limitation. The gene encoding arsenic methylase arsM was unexpectedly abundant in soil metagenomes (median 48%), suggesting that it plays a prominent role in global arsenic biogeochemistry. Our analysis advances understanding of arsenic resistance, metabolism, and biogeochemistry, and our approach provides a roadmap for the ecological investigation of environmental resistomes.

  • Inhibiting eukaryotic ribosome biogenesis
    BMC Biol. (IF 6.723) Pub Date : 2019-06-10
    Dominik Awad; Michael Prattes; Lisa Kofler; Ingrid Rössler; Mathias Loibl; Melanie Pertl; Gertrude Zisser; Heimo Wolinski; Brigitte Pertschy; Helmut Bergler

    Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.

  • The impact of skin care products on skin chemistry and microbiome dynamics
    BMC Biol. (IF 6.723) Pub Date : 2019-06-12
    Amina Bouslimani; Ricardo da Silva; Tomasz Kosciolek; Stefan Janssen; Chris Callewaert; Amnon Amir; Kathleen Dorrestein; Alexey V. Melnik; Livia S. Zaramela; Ji-Nu Kim; Gregory Humphrey; Tara Schwartz; Karenina Sanders; Caitriona Brennan; Tal Luzzatto-Knaan; Gail Ackermann; Daniel McDonald; Karsten Zengler; Rob Knight; Pieter C. Dorrestein

    Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks. Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5–1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics. These findings may lead to next-generation precision beauty products and therapies for skin disorders.

  • Multiple levels of the unknown in microbiome research
    BMC Biol. (IF 6.723) Pub Date : 2019-06-12
    Andrew Maltez Thomas; Nicola Segata

    Metagenomics allows exploration of aspects of a microbial community that were inaccessible by cultivation-based approaches targeting single microbes. Many new microbial taxa and genes have been discovered using metagenomics, but different kinds of “unknowns” still remain in a microbiome experiment. We discuss here whether and how it is possible to deal with them.

  • The emergence of the two cell fates and their associated switching for a negative auto-regulating gene
    BMC Biol. (IF 6.723) Pub Date : 2019-06-15
    Zhenlong Jiang; Li Tian; Xiaona Fang; Kun Zhang; Qiong Liu; Qingzhe Dong; Erkang Wang; Jin Wang

    Decisions in the cell that lead to its ultimate fate are important for fundamental cellular functions such as proliferation, growth, differentiation, development, and death. These cell fate decisions can be influenced by both the gene regulatory network and also environmental factors and can be modeled using simple gene feedback circuits. Negative auto-regulation is a common feedback motif in the gene circuits. It can act to reduce gene expression noise or induce oscillatory expression and is thought to lead to only one cell fate. Here, we present experimental and modeling data to suggest that a self-repressor circuit can lead to two cell fates under specific conditions. We show that the introduction of inducers capable of binding and unbinding to a self-repressing gene product (protein), thus regulating the associated gene, can lead to the emergence of two cell states. We suggest that the inducers can alter the effective regulatory binding and unbinding speed of the self-repressor regulatory protein to its destination DNA without changing the gene itself. The corresponding simulation results are consistent with the experimental findings. We propose physical and quantitative explanations for the origin of the two phenotypic cell fates. Our results suggest a mechanism for the emergence of multiple cell fates. This may explain the heterogeneity often observed among cell states, while illustrating that altering gene regulation strength can influence cell fates and their decision-making processes without genetic changes.

  • RNA-Seq in 296 phased trios provides a high-resolution map of genomic imprinting
    BMC Biol. (IF 6.723) Pub Date : 2019-06-24
    Bharati Jadhav; Ramin Monajemi; Kristina K. Gagalova; Daniel Ho; Harmen H. M. Draisma; Mark A. van de Wiel; Lude Franke; Bastiaan T. Heijmans; Joyce van Meurs; Rick Jansen; Peter A. C. ‘t Hoen; Andrew J. Sharp; Szymon M. Kiełbasa

    Identification of imprinted genes, demonstrating a consistent preference towards the paternal or maternal allelic expression, is important for the understanding of gene expression regulation during embryonic development and of the molecular basis of developmental disorders with a parent-of-origin effect. Combining allelic analysis of RNA-Seq data with phased genotypes in family trios provides a powerful method to detect parent-of-origin biases in gene expression. We report findings in 296 family trios from two large studies: 165 lymphoblastoid cell lines from the 1000 Genomes Project and 131 blood samples from the Genome of the Netherlands (GoNL) participants. Based on parental haplotypes, we identified > 2.8 million transcribed heterozygous SNVs phased for parental origin and developed a robust statistical framework for measuring allelic expression. We identified a total of 45 imprinted genes and one imprinted unannotated transcript, including multiple imprinted transcripts showing incomplete parental expression bias that was located adjacent to strongly imprinted genes. For example, PXDC1, a gene which lies adjacent to the paternally expressed gene FAM50B, shows a 2:1 paternal expression bias. Other imprinted genes had promoter regions that coincide with sites of parentally biased DNA methylation identified in the blood from uniparental disomy (UPD) samples, thus providing independent validation of our results. Using the stranded nature of the RNA-Seq data in lymphoblastoid cell lines, we identified multiple loci with overlapping sense/antisense transcripts, of which one is expressed paternally and the other maternally. Using a sliding window approach, we searched for imprinted expression across the entire genome, identifying a novel imprinted putative lncRNA in 13q21.2. Overall, we identified 7 transcripts showing parental bias in gene expression which were not reported in 4 other recent RNA-Seq studies of imprinting. Our methods and data provide a robust and high-resolution map of imprinted gene expression in the human genome.

  • Studying metabolic flux adaptations in cancer through integrated experimental-computational approaches
    BMC Biol. (IF 6.723) Pub Date : 2019-07-04
    Shoval Lagziel; Won Dong Lee; Tomer Shlomi

    The study of tumorigenic rewiring of metabolic flux is at the heart of cancer metabolic research. Here, we review two widely used computational flux inference approaches: isotope tracing coupled with Metabolic Flux Analysis (13C-MFA) and COnstraint-Based Reconstruction and Analysis (COBRA). We describe the applications of these complementary modeling techniques for studying metabolic adaptations in cancer cells due to genetic mutations and the tumor microenvironment, as well as for identifying novel enzymatic targets for anti-cancer drugs. We further highlight the advantages and limitations of COBRA and 13C-MFA and the main challenges ahead.

  • Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer
    BMC Biol. (IF 6.723) Pub Date : 2019-07-04
    Neha M. Akella; Lorela Ciraku; Mauricio J. Reginato

    Altered metabolism and deregulated cellular energetics are now considered a hallmark of all cancers. Glucose, glutamine, fatty acids, and amino acids are the primary drivers of tumor growth and act as substrates for the hexosamine biosynthetic pathway (HBP). The HBP culminates in the production of an amino sugar uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) that, along with other charged nucleotide sugars, serves as the basis for biosynthesis of glycoproteins and other glycoconjugates. These nutrient-driven post-translational modifications are highly altered in cancer and regulate protein functions in various cancer-associated processes. In this review, we discuss recent progress in understanding the mechanistic relationship between the HBP and cancer.

  • Mitochondrial DNA: the overlooked oncogenome?
    BMC Biol. (IF 6.723) Pub Date : 2019-07-08
    Payam A. Gammage; Christian Frezza

    Perturbed mitochondrial bioenergetics constitute a core pillar of cancer-associated metabolic dysfunction. While mitochondrial dysfunction in cancer may result from myriad biochemical causes, a historically neglected source is that of the mitochondrial genome. Recent large-scale sequencing efforts and clinical studies have highlighted the prevalence of mutations in mitochondrial DNA (mtDNA) in human tumours and their potential roles in cancer progression. In this review we discuss the biology of the mitochondrial genome, sources of mtDNA mutations, and experimental evidence of a role for mtDNA mutations in cancer. We also propose a ‘metabolic licensing’ model for mtDNA mutation-derived dysfunction in cancer initiation and progression.

  • Metabolic vulnerabilities of metastasizing cancer cells
    BMC Biol. (IF 6.723) Pub Date : 2019-07-11
    Sarah-Maria Fendt

    Most cancer patients die due to metastasis formation. Therefore, understanding, preventing, and treating metastatic cancers is an unmet need. Recent research indicates that cancer cells that undergo metastasis formation have a distinct metabolism that can be targeted. Here, I would like to discuss potential opportunities in exploiting the metabolic vulnerabilities of metastasizing cancer cells.

  • Impact of genome architecture on the functional activation and repression of Hox regulatory landscapes
    BMC Biol. (IF 6.723) Pub Date : 2019-07-12
    Eddie Rodríguez-Carballo; Lucille Lopez-Delisle; Nayuta Yakushiji-Kaminatsui; Asier Ullate-Agote; Denis Duboule

    The spatial organization of the mammalian genome relies upon the formation of chromatin domains of various scales. At the level of gene regulation in cis, collections of enhancer sequences define large regulatory landscapes that usually match with the presence of topologically associating domains (TADs). These domains often contain ranges of enhancers displaying similar or related tissue specificity, suggesting that in some cases, such domains may act as coherent regulatory units, with a global on or off state. By using the HoxD gene cluster, which specifies the topology of the developing limbs via highly orchestrated regulation of gene expression, as a paradigm, we investigated how the arrangement of regulatory domains determines their activity and function. Proximal and distal cells in the developing limb express different levels of Hoxd genes, regulated by flanking 3′ and 5′ TADs, respectively. We characterized the effect of large genomic rearrangements affecting these two TADs, including their fusion into a single chromatin domain. We show that, within a single hybrid TAD, the activation of both proximal and distal limb enhancers globally occurred as when both TADs are intact. However, the activity of the 3′ TAD in distal cells is generally increased in the fused TAD, when compared to wild type where it is silenced. Also, target gene activity in distal cells depends on whether or not these genes had previously responded to proximal enhancers, which determines the presence or absence of H3K27me3 marks. We also show that the polycomb repressive complex 2 is mainly recruited at the Hox gene cluster and can extend its coverage to far-cis regulatory sequences as long as confined to the neighboring TAD structure. We conclude that antagonistic limb proximal and distal enhancers can exert their specific effects when positioned into the same TAD and in the absence of their genuine target genes. We also conclude that removing these target genes reduced the coverage of a regulatory landscape by chromatin marks associated with silencing, which correlates with its prolonged activity in time.

  • RNA processing errors triggered by cadmium and integrator complex disruption are signals for environmental stress
    BMC Biol. (IF 6.723) Pub Date : 2019-07-16
    Cheng-Wei Wu; Keon Wimberly; Adele Pietras; William Dodd; M. Blake Atlas; Keith P. Choe

    Adaptive responses to stress are essential for cell and organismal survival. In metazoans, little is known about the impact of environmental stress on RNA homeostasis. By studying the regulation of a cadmium-induced gene named numr-1 in Caenorhabditis elegans, we discovered that disruption of RNA processing acts as a signal for environmental stress. We find that NUMR-1 contains motifs common to RNA splicing factors and influences RNA splicing in vivo. A genome-wide screen reveals that numr-1 is strongly and specifically induced by silencing of genes that function in basal RNA metabolism including subunits of the metazoan integrator complex. Human integrator processes snRNAs for functioning with splicing factors, and we find that silencing of C. elegans integrator subunits disrupts snRNA processing, causes aberrant pre-mRNA splicing, and induces the heat shock response. Cadmium, which also strongly induces numr-1, has similar effects on RNA and the heat shock response. Lastly, we find that heat shock factor-1 is required for full numr-1 induction by cadmium. Our results are consistent with a model in which disruption of integrator processing of RNA acts as a molecular damage signal initiating an adaptive stress response mediated by heat shock factor-1. When numr-1 is induced via this pathway in C. elegans, its function in RNA metabolism may allow it to mitigate further damage and thereby promote tolerance to cadmium.

  • Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia
    BMC Biol. (IF 6.723) Pub Date : 2019-07-18
    Lucille Stuani; Marie Sabatier; Jean-Emmanuel Sarry

    Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.

  • mTORC1/AMPK responses define a core gene set for developmental cell fate switching
    BMC Biol. (IF 6.723) Pub Date : 2019-07-18
    Pundrik Jaiswal; Alan R. Kimmel

    Kinases mTORC1 and AMPK act as energy sensors, controlling nutrient responses and cellular growth. Changes in nutrient levels affect diverse transcriptional networks, making it challenging to identify downstream paths that regulate cellular growth or a switch to development via nutrient variation. The life cycle of Dictyostelium presents an excellent model to study the mTORC1 signaling function for growth and development. Dictyostelium grow as single cells in nutrient-rich media, but, upon nutrient withdrawal, growth ceases and cells enter a program for multi-cell development. While nearly half the genome shows gene expression changes upon nutrient removal, we hypothesized that not all of these genes are required for the switch to program development. Through manipulation of mTORC1 activity alone, without nutrient removal, we focused on a core network of genes that are required for switching between growth and development for regulation of cell fate decisions. To identify developmentally essential genes, we sought ways to promote development in the absence of nutrient loss. We first examined the activities of mTORC1 and AMPK in Dictyostelium during phases of rapid growth and starvation-induced development and showed they exhibited reciprocal patterns of regulation under various conditions. Using these as initial readouts, we identified rich media conditions that promoted rapid cell growth but, upon mTORC1 inactivation by rapamycin, led to a growth/development switch. Examination of gene expression during cell fate switching showed that changes in expression of most starvation-regulated genes were not required for developmental induction. Approximately 1000 genes which become downregulated upon rapamycin treatment comprise a cellular growth network involving ribosome biogenesis, protein synthesis, and cell cycle processes. Conversely, the upregulation of ~ 500 genes by rapamycin treatment defines essential signaling pathways for developmental induction, and ~ 135 of their protein products intersect through the well-defined cAMP/PKA network. Many of the rapamycin-induced genes we found are currently unclassified, and mutation analyses of 5 such genes suggest a novel gene class essential for developmental regulation. We show that manipulating activities of mTORC1/AMPK in the absence of nutrient withdrawal is sufficient for a growth-to-developmental fate switch in Dictyostelium, providing a means to identify transcriptional networks and signaling pathways essential for early development.

  • Viral hijacking of cellular metabolism
    BMC Biol. (IF 6.723) Pub Date : 2019-07-18
    Shivani K. Thaker; James Ch’ng; Heather R. Christofk

    This review discusses the current state of the viral metabolism field and gaps in knowledge that will be important for future studies to investigate. We discuss metabolic rewiring caused by viruses, the influence of oncogenic viruses on host cell metabolism, and the use of viruses as guides to identify critical metabolic nodes for cancer anabolism. We also discuss the need for more mechanistic studies identifying viral proteins responsible for metabolic hijacking and for in vivo studies of viral-induced metabolic rewiring. Improved technologies for detailed metabolic measurements and genetic manipulation will lead to important discoveries over the next decade.

  • FoxH1 represses miR-430 during early embryonic development of zebrafish via non-canonical regulation
    BMC Biol. (IF 6.723) Pub Date : 2019-07-30
    Patrick Fischer; Hao Chen; Frederic Pacho; Dietmar Rieder; Robin A. Kimmel; Dirk Meyer

    FoxH1 is a forkhead transcription factor with conserved key functions in vertebrate mesoderm induction and left-right patterning downstream of the TGF-beta/Nodal signaling pathway. Binding of the forkhead domain (FHD) of FoxH1 to a highly conserved proximal sequence motif was shown to regulate target gene expression. We identify the conserved microRNA-430 family (miR-430) as a novel target of FoxH1. miR-430 levels are increased in foxH1 mutants, resulting in a reduced expression of transcripts that are targeted by miR-430 for degradation. To determine the underlying mechanism of miR-430 repression, we performed chromatin immunoprecipitation studies and overexpression experiments with mutant as well as constitutive active and repressive forms of FoxH1. Our studies reveal a molecular interaction of FoxH1 with miR-430 loci independent of the FHD. Furthermore, we show that previously described mutant forms of FoxH1 that disrupt DNA binding or that lack the C-terminal Smad Interaction Domain (SID) dominantly interfere with miR-430 repression, but not with the regulation of previously described FoxH1 targets. We were able to identify the distinct roles of protein domains of FoxH1 in the regulation process of miR-430. We provide evidence that the indirect repression of miR-430 loci depends on the connection to a distal repressive chromosome environment via a non-canonical mode. The widespread distribution of such non-canonical binding sites of FoxH1, found not only in our study, argues against a function restricted to regulating miR-430 and for a more global role of FoxH1 in chromatin folding.

  • Mechanistic interpretation of non-coding variants for discovering transcriptional regulators of drug response
    BMC Biol. (IF 6.723) Pub Date : 2019-07-30
    Xiaoman Xie; Casey Hanson; Saurabh Sinha

    Identification of functional non-coding variants and their mechanistic interpretation is a major challenge of modern genomics, especially for precision medicine. Transcription factor (TF) binding profiles and epigenomic landscapes in reference samples allow functional annotation of the genome, but do not provide ready answers regarding the effects of non-coding variants on phenotypes. A promising computational approach is to build models that predict TF-DNA binding from sequence, and use such models to score a variant’s impact on TF binding strength. Here, we asked if this mechanistic approach to variant interpretation can be combined with information on genotype-phenotype associations to discover transcription factors regulating phenotypic variation among individuals. We developed a statistical approach that integrates phenotype, genotype, gene expression, TF ChIP-seq, and Hi-C chromatin interaction data to answer this question. Using drug sensitivity of lymphoblastoid cell lines as the phenotype of interest, we tested if non-coding variants statistically linked to the phenotype are enriched for strong predicted impact on DNA binding strength of a TF and thus identified TFs regulating individual differences in the phenotype. Our approach relies on a new method for predicting variant impact on TF-DNA binding that uses a combination of biophysical modeling and machine learning. We report statistical and literature-based support for many of the TFs discovered here as regulators of drug response variation. We show that the use of mechanistically driven variant impact predictors can identify TF-drug associations that would otherwise be missed. We examined in depth one reported association—that of the transcription factor ELF1 with the drug doxorubicin—and identified several genes that may mediate this regulatory relationship. Our work represents initial steps in utilizing predictions of variant impact on TF binding sites for discovery of regulatory mechanisms underlying phenotypic variation. Future advances on this topic will be greatly beneficial to the reconstruction of phenotype-associated gene regulatory networks.

  • Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement
    BMC Biol. (IF 6.723) Pub Date : 2019-11-18
    Jes Alexander; Gregory M. Findlay; Martin Kircher; Jay Shendure

    Recent advances in genome editing have facilitated the direct manipulation of not only the genome, but also the epigenome. Genome editing is typically performed by introducing a single CRISPR/Cas9-mediated double-strand break (DSB), followed by non-homologous end joining (NHEJ)- or homology-directed repair-mediated repair. Epigenome editing, and in particular methylation of CpG dinucleotides, can be performed using catalytically inactive Cas9 (dCas9) fused to a methyltransferase domain. However, for investigations of the role of methylation in gene silencing, studies based on dCas9-methyltransferase have limited resolution and are potentially confounded by the effects of binding of the fusion protein. As an alternative strategy for epigenome editing, we tested CRISPR/Cas9 dual cutting of the genome in the presence of in vitro methylated exogenous DNA, with the aim of driving replacement of the DNA sequence intervening the dual cuts via NHEJ. In a proof of concept at the HPRT1 promoter, successful replacement events with heavily methylated alleles of a CpG island resulted in functional silencing of the HPRT1 gene. Although still limited in efficiency, our study demonstrates concurrent epigenome and genome editing in a single event. This study opens the door to investigations of the functional consequences of methylation patterns at single CpG dinucleotide resolution. Our results furthermore support the conclusion that promoter methylation is sufficient to functionally silence gene expression.

  • Genomic adaptations to chemosymbiosis in the deep-sea seep-dwelling tubeworm Lamellibrachia luymesi
    BMC Biol. (IF 6.723) Pub Date : 2019-11-18
    Yuanning Li; Michael G. Tassia; Damien S. Waits; Viktoria E. Bogantes; Kyle T. David; Kenneth M. Halanych

    Symbiotic relationships between microbes and their hosts are widespread and diverse, often providing protection or nutrients, and may be either obligate or facultative. However, the genetic mechanisms allowing organisms to maintain host-symbiont associations at the molecular level are still mostly unknown, and in the case of bacterial-animal associations, most genetic studies have focused on adaptations and mechanisms of the bacterial partner. The gutless tubeworms (Siboglinidae, Annelida) are obligate hosts of chemoautotrophic endosymbionts (except for Osedax which houses heterotrophic Oceanospirillales), which rely on the sulfide-oxidizing symbionts for nutrition and growth. Whereas several siboglinid endosymbiont genomes have been characterized, genomes of hosts and their adaptations to this symbiosis remain unexplored. Here, we present and characterize adaptations of the cold seep-dwelling tubeworm Lamellibrachia luymesi, one of the longest-lived solitary invertebrates. We sequenced the worm’s ~ 688-Mb haploid genome with an overall completeness of ~ 95% and discovered that L. luymesi lacks many genes essential in amino acid biosynthesis, obligating them to products provided by symbionts. Interestingly, the host is known to carry hydrogen sulfide to thiotrophic endosymbionts using hemoglobin. We also found an expansion of hemoglobin B1 genes, many of which possess a free cysteine residue which is hypothesized to function in sulfide binding. Contrary to previous analyses, the sulfide binding mediated by zinc ions is not conserved across tubeworms. Thus, the sulfide-binding mechanisms in sibgolinids need to be further explored, and B1 globins might play a more important role than previously thought. Our comparative analyses also suggest the Toll-like receptor pathway may be essential for tolerance/sensitivity to symbionts and pathogens. Several genes related to the worm’s unique life history which are known to play important roles in apoptosis, cell proliferation, and aging were also identified. Last, molecular clock analyses based on phylogenomic data suggest modern siboglinid diversity originated in 267 mya (± 70 my) support previous hypotheses indicating a Late Mesozoic or Cenozoic origins of approximately 50–126 mya for vestimentiferans. Here, we elucidate several specific adaptations along various molecular pathways that link phenome to genome to improve understanding of holobiont evolution. Our findings of adaptation in genomic mechanisms to reducing environments likely extend to other chemosynthetic symbiotic systems.

  • Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment
    BMC Biol. (IF 6.723) Pub Date : 2019-11-13
    Hang Ruan; Yingnan Liao; Zongna Ren; Lin Mao; Fang Yao; Peng Yu; Youqiong Ye; Zhao Zhang; Shengli Li; Hanshi Xu; Jiewei Liu; Lixia Diao; Bingying Zhou; Leng Han; Li Wang

    Cardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized. In order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features. Through constructing developmental trajectory of cardiac differentiation and putative ligand-receptor interactions, we revealed crosstalk between cardiac progenitor cells and endoderm cells, which could potentially provide a cellular microenvironment supporting cardiac lineage commitment at day 5. In addition, computational analyses of single-cell RNA-Seq data unveiled ETS1 (ETS Proto-Oncogene 1) activation as an important downstream event induced by crosstalk between cardiac progenitor cells and endoderm cells. Consistent with the findings from single-cell analysis, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) against ETS1 revealed genomic occupancy of ETS1 at cardiac structural genes at day 9 and day 14, whereas ETS1 depletion dramatically compromised cardiac differentiation. Together, our study not only characterized the molecular features of different cell types and identified ETS1 as a crucial factor induced by cell-cell crosstalk contributing to cardiac lineage commitment from a pluripotent state, but may also have important implications for understanding human heart development at early embryonic stage, as well as directed manipulation of cardiac differentiation in regenerative medicine.

  • Genome sequencing of evolved aspergilli populations reveals robust genomes, transversions in A. flavus, and sexual aberrancy in non-homologous end-joining mutants
    BMC Biol. (IF 6.723) Pub Date : 2019-11-11
    Isidro Álvarez-Escribano; Christoph Sasse; Jin Woo Bok; Hyunsoo Na; Mojgan Amirebrahimi; Anna Lipzen; Wendy Schackwitz; Joel Martin; Kerrie Barry; Gabriel Gutiérrez; Sara Cea-Sánchez; Ana T. Marcos; Igor V. Grigoriev; Nancy P. Keller; Gerhard H. Braus; David Cánovas

    Aspergillus spp. comprises a very diverse group of lower eukaryotes with a high relevance for industrial applications and clinical implications. These multinucleate species are often cultured for many generations in the laboratory, which can unknowingly propagate hidden genetic mutations. To assess the likelihood of such events, we studied the genome stability of aspergilli by using a combination of mutation accumulation (MA) lines and whole genome sequencing. We sequenced the whole genomes of 30 asexual and 10 sexual MA lines of three Aspergillus species (A. flavus, A. fumigatus and A. nidulans) and estimated that each MA line accumulated mutations for over 4000 mitoses during asexual cycles. We estimated mutation rates of 4.2 × 10−11 (A. flavus), 1.1 × 10−11 (A. fumigatus) and 4.1 × 10−11 (A. nidulans) per site per mitosis, suggesting that the genomes are very robust. Unexpectedly, we found a very high rate of GC → TA transversions only in A. flavus. In parallel, 30 asexual lines of the non-homologous end-joining (NHEJ) mutants of the three species were also allowed to accumulate mutations for the same number of mitoses. Sequencing of these NHEJ MA lines gave an estimated mutation rate of 5.1 × 10−11 (A. flavus), 2.2 × 10−11 (A. fumigatus) and 4.5 × 10−11 (A. nidulans) per base per mitosis, which is slightly higher than in the wild-type strains and some ~ 5–6 times lower than in the yeasts. Additionally, in A. nidulans, we found a NHEJ-dependent interference of the sexual cycle that is independent of the accumulation of mutations. We present for the first time direct counts of the mutation rate of filamentous fungal species and find that Aspergillus genomes are very robust. Deletion of the NHEJ machinery results in a slight increase in the mutation rate, but at a rate we suggest is still safe to use for biotechnology purposes. Unexpectedly, we found GC→TA transversions predominated only in the species A. flavus, which could be generated by the hepatocarcinogen secondary metabolite aflatoxin. Lastly, a strong effect of the NHEJ mutation in self-crossing was observed and an increase in the mutations of the asexual lines was quantified.

  • The microbiome of the upper respiratory tract in health and disease
    BMC Biol. (IF 6.723) Pub Date : 2019-11-07
    Christina Kumpitsch; Kaisa Koskinen; Veronika Schöpf; Christine Moissl-Eichinger

    The human upper respiratory tract (URT) offers a variety of niches for microbial colonization. Local microbial communities are shaped by the different characteristics of the specific location within the URT, but also by the interaction with both external and intrinsic factors, such as ageing, diseases, immune responses, olfactory function, and lifestyle habits such as smoking. We summarize here the current knowledge about the URT microbiome in health and disease, discuss methodological issues, and consider the potential of the nasal microbiome to be used for medical diagnostics and as a target for therapy.

  • Correction to: A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578
    BMC Biol. (IF 6.723) Pub Date : 2019-10-30
    Yi Shen; Hod Dana; Ahmed S. Abdelfattah; Ronak Patel; Jamien Shea; Rosana S. Molina; Bijal Rawal; Vladimir Rancic; Yu-Fen Chang; Lanshi Wu; Yingche Chen; Yong Qian; Matthew D. Wiens; Nathan Hambleton; Klaus Ballanyi; Thomas E. Hughes; Mikhail Drobizhev; Douglas S. Kim; Minoru Koyama; Eric R. Schreiter; Robert E. Campbell

    In the online version of the article [ 1 ], Figure S1 was mistakenly replaced with Figure 1.

  • GLIPR1L1 is an IZUMO-binding protein required for optimal fertilization in the mouse
    BMC Biol. (IF 6.723) Pub Date : 2019-10-31
    Avinash S. Gaikwad; Amanda L. Anderson; D. Jo Merriner; Anne E. O’Connor; Brendan J. Houston; R. John Aitken; Moira K. O’Bryan; Brett Nixon

    The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in spermatozoa that are required for membrane fusion. Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins. At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1). This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure of IZUMO1 redistribution. Collectively, this study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.

  • A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578.
    BMC Biol. (IF 6.723) Pub Date : 2018-01-18
    Yi Shen,Hod Dana,Ahmed S Abdelfattah,Ronak Patel,Jamien Shea,Rosana S Molina,Bijal Rawal,Vladimir Rancic,Yu-Fen Chang,Lanshi Wu,Yingche Chen,Yong Qian,Matthew D Wiens,Nathan Hambleton,Klaus Ballanyi,Thomas E Hughes,Mikhail Drobizhev,Douglas S Kim,Minoru Koyama,Eric R Schreiter,Robert E Campbell

    BACKGROUND Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores. RESULTS Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo. CONCLUSION K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.

  • p97 complexes as signal integration hubs.
    BMC Biol. (IF 6.723) Pub Date : 2012-06-15
    Hemmo Meyer

    In the ubiquitin-proteasome system, a subset of ubiquitylated proteins requires the AAA+ ATPase p97 (also known as VCP or Cdc48) for extraction from membranes or protein complexes before delivery to the proteasome for degradation. Diverse ubiquitin adapters are known to link p97 to its client proteins, but two recent papers on the adapter protein UBXD7, including one by Bandau et al. in BMC Biology, suggest that rather than simply linking p97 to ubiquitylated proteins, this adapter may be essential to coordinate ubiquitylation and p97-mediated extraction of the proteasome substrate. These findings add to growing indications of richly diverse roles of adapters in p97-mediated signaling functions.

  • UBXN7 docks on neddylated cullin complexes using its UIM motif and causes HIF1α accumulation.
    BMC Biol. (IF 6.723) Pub Date : 2012-04-28
    Susanne Bandau,Axel Knebel,Zoe O Gage,Nicola T Wood,Gabriela Alexandru

    BACKGROUND The proteins from the UBA-UBX family interact with ubiquitylated proteins via their UBA domain and with p97 via their UBX domain, thereby acting as substrate-binding adaptors for the p97 ATPase. In particular, human UBXN7 (also known as UBXD7) mediates p97 interaction with the transcription factor HIF1α that is actively ubiquitylated in normoxic cells by a CUL2-based E3 ligase, CRL2. Mass spectrometry analysis of UBA-UBX protein immunoprecipitates showed that they interact with a multitude of E3 ubiquitin-ligases. Conspicuously, UBXN7 was most proficient in interacting with cullin-RING ligase subunits. We therefore set out to determine whether UBXN7 interaction with cullins was direct or mediated by its ubiquitylated targets bound to the UBA domain. RESULTS We show that UBXN7 interaction with cullins is independent of ubiquitin- and substrate-binding. Instead, it relies on the UIM motif in UBXN7 that directly engages the NEDD8 modification on cullins. To understand the functional consequences of UBXN7 interaction with neddylated cullins, we focused on HIF1α, a CUL2 substrate that uses UBXD7/p97 as a ubiquitin-receptor on its way to proteasome-mediated degradation. We find that UBXN7 over-expression converts CUL2 to its neddylated form and causes the accumulation of non-ubiquitylated HIF1α. Both of these effects are strictly UIM-dependent and occur only when UBXN7 contains an intact UIM motif. We also show that HIF1α carrying long ubiquitin-chains can recruit alternative ubiquitin-receptors, lacking p97's ATP-dependent segregase activity. CONCLUSIONS Our study shows that independently of its function as a ubiquitin-binding adaptor for p97, UBXN7 directly interacts with neddylated cullins and causes the accumulation of the CUL2 substrate HIF1α. We propose that by sequestering CUL2 in its neddylated form, UBXN7 negatively regulates the ubiquitin-ligase activity of CRL2 and this might prevent recruitment of ubiquitin-receptors other than p97 to nuclear HIF1α.

  • Segregation of striated and smooth muscle lineages by a Notch-dependent regulatory network.
    BMC Biol. (IF 6.723) Pub Date : 2014-07-13
    Mordechai Applebaum,Raz Ben-Yair,Chaya Kalcheim

    BACKGROUND Lineage segregation from multipotent epithelia is a central theme in development and in adult stem cell plasticity. Previously, we demonstrated that striated and smooth muscle cells share a common progenitor within their epithelium of origin, the lateral domain of the somite-derived dermomyotome. However, what controls the segregation of these muscle subtypes remains unknown. We use this in vivo bifurcation of fates as an experimental model to uncover the underlying mechanisms of lineage diversification from bipotent progenitors. RESULTS Using the strength of spatio-temporally controlled gene missexpression in avian embryos, we report that Notch harbors distinct pro-smooth muscle activities depending on the duration of the signal; short periods prevent striated muscle development and extended periods, through Snail1, promote cell emigration from the dermomyotome towards a smooth muscle fate. Furthermore, we define a Muscle Regulatory Network, consisting of Id2, Id3, FoxC2 and Snail1, which acts in concert to promote smooth muscle by antagonizing the pro-myogenic activities of Myf5 and Pax7, which induce striated muscle fate. Notch and BMP closely regulate the network and reciprocally reinforce each other¿s signal. In turn, components of the network strengthen Notch signaling, while Pax7 silences this signaling. These feedbacks augment the robustness and flexibility of the network regulating muscle subtype segregation. CONCLUSIONS Our results demarcate the details of the Muscle Regulatory Network, underlying the segregation of muscle sublineages from the lateral dermomyotome, and exhibit how factors within the network promote the smooth muscle at the expense of the striated muscle fate. This network acts as an exemplar demonstrating how lineage segregation occurs within epithelial primordia by integrating inputs from competing factors.

  • Q&A: promise and pitfalls of genome-wide association studies.
    BMC Biol. (IF 6.723) Pub Date : 2010-04-14
    John F Y Brookfield

  • Video Q&A: what is autism? - A personal view.
    BMC Biol. (IF 6.723) Pub Date : 2010-04-14
    Martin Raff

  • Genetical genomic determinants of alcohol consumption in rats and humans.
    BMC Biol. (IF 6.723) Pub Date : 2009-10-31
    Boris Tabakoff,Laura Saba,Morton Printz,Pam Flodman,Colin Hodgkinson,David Goldman,George Koob,Heather N Richardson,Katerina Kechris,Richard L Bell,Norbert Hübner,Matthias Heinig,Michal Pravenec,Jonathan Mangion,Lucie Legault,Maurice Dongier,Katherine M Conigrave,John B Whitfield,John Saunders,Bridget Grant,Paula L Hoffman,

    BACKGROUND We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. RESULTS In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. CONCLUSION Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans. The importance of a well-defined phenotype is also illustrated. Our results also suggest that different genetic factors predispose alcohol dependence versus the phenotype of alcohol consumption.

Contents have been reproduced by permission of the publishers.