当前位置: X-MOL 学术J. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Test Of The Laboratory Evaporation Method Using Coupled Water, Vapor And Heat Flow Modelling
Journal of Hydrology ( IF 6.4 ) Pub Date : 2019-03-01 , DOI: 10.1016/j.jhydrol.2018.12.045
Sascha C. Iden , Johanna R. Blöcher , Efstathios Diamantopoulos , Andre Peters , Wolfgang Durner

Abstract Laboratory evaporation experiments are used to determine soil hydraulic properties (SHP). In most cases, data are evaluated with the simplified evaporation method (SEM). Numerical simulations were used before to quantify the accuracy of the SEM and it was found that the method yields accurate estimates of SHP. However, previous tests neither accounted for heat flow, nor thermal fluxes of liquid water and water vapor, nor temperature effects on the transport properties. Since evaporation experiments are under most circumstances non-isothermal, past studies were therefore oversimplified and likely inaccurate. The objective of this article is to test the accuracy of the SEM using numerical simulations with a coupled model of water, vapor, and heat flow which is based on the Philip-de Vries theory and solves the surface energy balance. The model provides a state-of-the-art description of the fluxes of water, vapor and energy during laboratory evaporation from bare soil. We present simulation results for different soil textures and resistances to vapor flow between soil and air, and analyze the accuracy of the SEM using the simulated data. The resulting average error for the water retention curve is smaller than 0.0025 m3 m−3 and the relative error of hydraulic conductivity ranges from 5 to 15% for sandy loam and clay loam. For sand, the error in conductivity is higher but the structural shape of the conductivity curve is still identified relatively well. Compared to previous analyses of the evaporation method assuming isothermal flow, the average error of the SEM turned out to be only slightly higher.

中文翻译:

使用耦合水、蒸汽和热流建模的实验室蒸发方法的数值试验

摘要 实验室蒸发实验用于确定土壤水力特性 (SHP)。在大多数情况下,使用简化蒸发法 (SEM) 评估数据。之前使用数值模拟来量化 SEM 的准确性,并且发现该方法产生了对 SHP 的准确估计。然而,之前的测试既没有考虑热流,也没有考虑液态水和水蒸气的热通量,也没有考虑温度对传输特性的影响。由于蒸发实验在大多数情况下是非等温的,因此过去的研究过于简单并且可能不准确。本文的目的是使用基于 Philip-de Vries 理论并解决表面能平衡的水、蒸汽和热流耦合模型的数值模拟来测试 SEM 的准确性。该模型提供了实验室从裸土蒸发过程中水、蒸汽和能量通量的最新描述。我们展示了不同土壤质地和土壤与空气之间蒸汽流动阻力的模拟结果,并使用模拟数据分析了 SEM 的准确性。得到的保水曲线平均误差小于 0.0025 m3 m-3,而砂壤土和粘壤土的导水率相对误差在 5% 到 15% 之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。实验室从裸露土壤蒸发过程中的蒸汽和能量。我们展示了不同土壤质地和土壤与空气之间蒸汽流动阻力的模拟结果,并使用模拟数据分析了 SEM 的准确性。得到的保水曲线平均误差小于 0.0025 m3 m-3,而砂壤土和粘壤土的导水率相对误差在 5% 到 15% 之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。实验室从裸露土壤蒸发过程中的蒸汽和能量。我们展示了不同土壤质地和土壤与空气之间蒸汽流动阻力的模拟结果,并使用模拟数据分析了 SEM 的准确性。得到的保水曲线平均误差小于 0.0025 m3 m-3,而砂壤土和粘壤土的导水率相对误差在 5% 到 15% 之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。我们展示了不同土壤质地和土壤与空气之间蒸汽流动阻力的模拟结果,并使用模拟数据分析了 SEM 的准确性。得到的保水曲线平均误差小于 0.0025 m3 m-3,而砂壤土和粘壤土的导水率相对误差在 5% 到 15% 之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。我们展示了不同土壤质地和土壤与空气之间蒸汽流动阻力的模拟结果,并使用模拟数据分析了 SEM 的准确性。得到的保水曲线平均误差小于 0.0025 m3 m-3,而砂壤土和粘壤土的导水率相对误差在 5% 到 15% 之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。0025 m3 m−3,砂壤土和粘壤土的导水率相对误差在5%~15%之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。0025 m3 m−3,砂壤土和粘壤土的导水率相对误差在5%~15%之间。对于砂,电导率的误差较大,但电导率曲线的结构形状还是比较好识别的。与之前假设等温流动的蒸发方法分析相比,SEM 的平均误差仅略高。
更新日期:2019-03-01
down
wechat
bug