当前位置: X-MOL 学术Annu. Rev. Fluid Mech. › 论文详情
Turbulence Modeling in the Age of Data
Annual Review of Fluid Mechanics ( IF 17.214 ) Pub Date : 2019-01-07 , DOI: 10.1146/annurev-fluid-010518-040547
Karthik Duraisamy, Gianluca Iaccarino, Heng Xiao

Data from experiments and direct simulations of turbulence have historically been used to calibrate simple engineering models such as those based on the Reynolds-averaged Navier–Stokes (RANS) equations. In the past few years, with the availability of large and diverse data sets, researchers have begun to explore methods to systematically inform turbulence models with data, with the goal of quantifying and reducing model uncertainties. This review surveys recent developments in bounding uncertainties in RANS models via physical constraints, in adopting statistical inference to characterize model coefficients and estimate discrepancy, and in using machine learning to improve turbulence models. Key principles, achievements, and challenges are discussed. A central perspective advocated in this review is that by exploiting foundational knowledge in turbulence modeling and physical constraints, researchers can use data-driven approaches to yield useful predictive models.
更新日期:2019-11-18

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug