当前位置: X-MOL 学术Fuel › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rapid fabrication of KTa0.75Nb0.25/g-C3N4 composite via microwave heating for efficient photocatalytic H2 evolution
Fuel ( IF 7.4 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.fuel.2018.12.011
Zhiqiang Chen , Pengfei Chen , Pingxing Xing , Xin Hu , Hongjun Lin , Leihong Zhao , Ying Wu , Yiming He

Abstract A novel KTa0.75Nb0.25O3 (KTN)/g-C3N4 composite photocatalyst was fabricated through microwave heating for realizing the efficient photocatalytic H2 evolution. The energy-efficient preparation method allowed g-C3N4 to be formed in-situ on KTN surface in thirty five minutes. The binary constitution of the KTN/g-C3N4 composite was verified by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) experiments. UV–visible diffuse reflection spectroscopy (DRS) experiments suggested that the photoabsorption performance was increased after the introduction of KTN. N2-adsorption analysis indicated that the addition of KTN slightly increased the surface area of g-C3N4. Photoluminescence (PL) spectroscopy, electrochemical impedance spectroscopy (EIS) and transient photocurrent response (PC) analyses confirmed that the KTN/g-C3N4 composite displayed longer lifetime of photoexcited charge carriers than g-C3N4, owing to the suitable band potentials and the close contact of KTN and g-C3N4. This property was believed to the key characteristic of the composite, which led to its excellent photocatalytic performance. Under simulated sunlight irradiation, the optimal KTN/g-C3N4 catalyst presented a photocatalytic H2-generation rate of 1673 μmol·g−1·h−1, 2.5 and 2.4 times higher than that of KTN and pure g-C3N4, respectively. Under visible light irradiation, the value was determined to be 86.2 μmol·g−1·h−1, which achieved 9.3 times that of g-C3N4.

中文翻译:

通过微波加热快速制备 KTa0.75Nb0.25/g-C3N4 复合材料以实现高效的光催化析氢

摘要 通过微波加热制备了一种新型KTa0.75Nb0.25O3 (KTN)/g-C3N4复合光催化剂,以实现高效的光催化析氢。节能的制备方法允许在 35 分钟内在 KTN 表面原位形成 g-C3N4。通过 X 射线衍射 (XRD) 和 X 射线光电子能谱 (XPS) 实验验证了 KTN/g-C3N4 复合材料的二元结构。紫外可见漫反射光谱 (DRS) 实验表明,引入 KTN 后光吸收性能有所提高。N2 吸附分析表明,KTN 的加入略微增加了 g-C3N4 的表面积。光致发光(PL)光谱,电化学阻抗谱 (EIS) 和瞬态光电流响应 (PC) 分析证实 KTN/g-C3N4 复合材料显示出比 g-C3N4 更长的光激发电荷载流子寿命,这是由于合适的带电势以及 KTN 和 g-的紧密接触。 C3N4。这种特性被认为是复合材料的关键特性,这导致了其优异的光催化性能。在模拟阳光照射下,最佳KTN/g-C3N4催化剂的光催化产氢率分别为1673 μmol·g-1·h-1,分别是KTN和纯g-C3N4的2.5倍和2.4倍。在可见光照射下,测定值为86.2 μmol·g-1·h-1,是g-C3N4的9.3倍。由于合适的带电势以及KTN和g-C3N4的紧密接触。这种特性被认为是复合材料的关键特性,这导致了其优异的光催化性能。在模拟阳光照射下,最佳KTN/g-C3N4催化剂的光催化产氢率分别为1673 μmol·g-1·h-1,分别是KTN和纯g-C3N4的2.5倍和2.4倍。在可见光照射下,测定值为86.2 μmol·g-1·h-1,是g-C3N4的9.3倍。由于合适的带电势以及KTN和g-C3N4的紧密接触。这种特性被认为是复合材料的关键特性,这导致了其优异的光催化性能。在模拟阳光照射下,最佳KTN/g-C3N4催化剂的光催化产氢率分别为1673 μmol·g-1·h-1,分别是KTN和纯g-C3N4的2.5倍和2.4倍。在可见光照射下,测定值为86.2 μmol·g-1·h-1,是g-C3N4的9.3倍。分别比 KTN 和纯 g-C3N4 高 4 倍。在可见光照射下,测定值为86.2 μmol·g-1·h-1,是g-C3N4的9.3倍。分别比 KTN 和纯 g-C3N4 高 4 倍。在可见光照射下,测定值为86.2 μmol·g-1·h-1,是g-C3N4的9.3倍。
更新日期:2019-04-01
down
wechat
bug