当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Visible-Light-Responsive Photocatalyst of Graphitic Carbon Nitride for Pathogenic Biofilm Control
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2018-12-07 00:00:00 , DOI: 10.1021/acsami.8b18543
Hongchen Shen , Enrique A. López-Guerra , Ruochen Zhu , Tara Diba , Qinmin Zheng , Santiago D. Solares , Jason M. Zara , Danmeng Shuai , Yun Shen

Pathogenic biofilms raise significant health and economic concerns, because these bacteria are persistent and can lead to long-term infections in vivo and surface contamination in healthcare and industrial facilities or devices. Compared with conventional antimicrobial strategies, photocatalysis holds promise for biofilm control because of its broad-spectrum effectiveness under ambient conditions, low cost, easy operation, and reduced maintenance. In this study, we investigated the performance and mechanism of Staphylococcus epidermidis biofilm control and eradication on the surface of an innovative photocatalyst, graphitic carbon nitride (g-C3N4), under visible-light irradiation, which overcame the need for ultraviolet light for many current photocatalysts (e.g., titanium dioxide (TiO2)). Optical coherence tomography and confocal laser scanning microscopy (CLSM) suggested that g-C3N4 coupons inhibited biofilm development and eradicated mature biofilms under the irradiation of white light-emitting diodes. Biofilm inactivation was observed occurring from the surface toward the center of the biofilms, suggesting that the diffusion of reactive species into the biofilms played a key role. By taking advantage of scanning electron microscopy, CLSM, and atomic force microscopy for biofilm morphology, composition, and mechanical property characterization, we demonstrated that photocatalysis destroyed the integrated and cohesive structure of biofilms and facilitated biofilm eradication by removing the extracellular polymeric substances. Moreover, reactive oxygen species generated during g-C3N4 photocatalysis were quantified via reactions with radical probes and 1O2 was believed to be responsible for biofilm control and removal. Our work highlights the promise of using g-C3N4 for a broad range of antimicrobial applications, especially for the eradication of persistent biofilms under visible-light irradiation, including photodynamic therapy, environmental remediation, food-industry applications, and self-cleaning surface development.

中文翻译:

石墨化氮化碳的可见光响应光催化剂用于致病性生物膜控制

病原性生物膜引起人们极大的健康和经济关注,因为这些细菌是持久性细菌,可导致体内长期感染以及医疗保健,工业设施或设备中的表面污染。与传统的抗菌策略相比,光催化技术在生物膜控制方面具有广阔的前景,因为它在环境条件下具有广谱有效性,低成本,易于操作且维护成本低。在这项研究中,我们研究了表皮葡萄球菌生物膜控制和根除新型光催化剂石墨氮化碳(gC 3 N 4)在可见光照射下克服了目前许多光催化剂(例如二氧化钛(TiO 2))对紫外线的需求。光学相干断层扫描和共聚焦激光扫描显微镜(CLSM)表明,gC 3 N 4试样在白光发光二极管的照射下抑制了生物膜的发育并消除了成熟的生物膜。观察到生物膜失活是从生物膜的表面向中心发生的,这表明反应物种向生物膜的扩散起着关键作用。通过利用扫描电子显微镜,CLSM和原子力显微镜对生物膜的形态,组成和力学性能进行表征,我们证明了光催化作用破坏了生物膜的整体和凝聚力结构,并通过去除细胞外的聚合物质促进了生物膜的消除。此外,通过与自由基探针的反应对gC 3 N 4光催化过程中产生的活性氧进行了定量。据信1 O 2负责生物膜的控制和去除。我们的工作凸显了将gC 3 N 4用于广泛的抗菌应用的希望,尤其是用于消除可见光照射下的持久性生物膜,包括光动力疗法,环境修复,食品工业应用和自清洁表面的显影。
更新日期:2018-12-07
down
wechat
bug