当前位置: X-MOL 学术J. Taiwan Inst. Chem. E. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
La2O3 media enhanced electrons transfer for improved CeVO4@halloysite nanotubes photocatalytic activity for removing tetracycline
Journal of the Taiwan Institute of Chemical Engineers ( IF 5.7 ) Pub Date : 2018-12-03 , DOI: 10.1016/j.jtice.2018.10.030
Jingru Guan , Jinze Li , Zhefei Ye , Dongyao Wu , Chongyang Liu , Huiqin Wang , Changchang Ma , Pengwei Huo , Yongsheng Yan

A series of La2O3/CeVO4@halloysite nanotubes composites were successfully fabricated by the hydrothermal method. The La2O3/CeVO4@halloysite nanotubes composites display outstanding photocatalytic activity for removing tetracycline (TC) solution under visible light irradiation (λ ≥ 420 nm). After irradiation 60 min, an optimized La2O3/CeVO4@halloysite nanotube composite exhibited a high photocatalytic activity (87.1%), which is 3.89 times higher than that of raw CeVO4 (22.4%). The improvement of ternary composites performance is attributed to the Ce3+ and Ce4+ pairs in CeVO4. Besides, constructing heterojunctions between La2O3 and CeVO4 can inhibit the recombination of photoinduced electrons and holes, which is ascribed to the La3+ as electron trap to enhance the charge transfer. According to the trapper experiments and Electron Spin Resonance (ESR) analysis, the h+ and •O2− are major reactive species during the degradation. In addition, the oxygen vacancies are in the ternary photocatalyssts. The photocatalytic degradation intermediates of the solution were identified by High performance liquid chromatography-Mass spectra (HPLC-MS).



中文翻译:

La 2 O 3介质增强了电子转移,从而改善了CeVO 4 @halloysite纳米管的光催化去除四环素的活性

采用水热法成功地制备了一系列La 2 O 3 / CeVO 4卤代铁纳米管复合材料。La 2 O 3 / CeVO 4卤代非金属纳米管复合材料在可见光(λ≥420 nm)照射下具有显着的光催化去除四环素(TC)溶液的活性。辐照60分钟后,优化的La 2 O 3 / CeVO 4卤代金属纳米管复合材料表现出较高的光催化活性(87.1%),是未反应的CeVO 4的高2.89 %(22.4%)。三元复合材料性能的提高归因于Ce 3+和CeVO 4中的Ce 4+对。此外,在La 2 O 3和CeVO 4之间构建异质结可以抑制光致电子和空穴的复合,这归因于La 3+作为电子陷阱,从而增强了电荷转移。根据捕集阱实验和电子自旋共振(ESR)分析,在降解过程中,h +和•O 2−是主要的反应性物质。另外,氧空位在三元光催化剂中。通过高效液相色谱-质谱(HPLC-MS)鉴定了溶液的光催化降解中间体。

更新日期:2018-12-04
down
wechat
bug