当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the complete loss of uniform plastic deformation of some ultrafine-grained metallic materials in tensile straining
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.ijplas.2018.10.002
Rainer Schwab

Abstract Reducing the grain size ranges among the most powerful methods to manage both high strength and high toughness of metallic structural materials. However, below certain grain sizes (often around 1 μm) some metallic materials lose most of their tensile ductility. In uniaxial tensile straining and related tensile forming processes, necking is then initiated immediately after first yielding. This in turn leads to a complete loss of uniform plastic deformation, a severe drawback in the use of these materials. Here, a new macromechanical approach in combination with micromechanical considerations is used to explain this long-standing riddle in materials science and engineering. The approach is based on the yield point phenomenon and the stress state that necessarily develops at the Luders fronts. Using a simple new material model and a novel strain hardening law, it is clearly shown, that below a critical grain size the necessary nominal stress to spread out a Luders band may be higher than the tensile strength. This invariably leads to a special form of plastic instability and the complete loss of uniform plastic deformation. Micro- and macromechanical considerations, experiments, analytical calculations and extensive finite element calculations are combined in this comprehensive study and fit together well. Furthermore, many features of the yield point phenomenon (the upper and lower yield strength, the spreading out of simple and complex Luders bands, the stress fluctuations within the Luders region) and the Hall-Petch relationship may now be understood in a new consistent way.

中文翻译:

了解一些超细晶金属材料在拉伸应变中均匀塑性变形的完全丧失

摘要 减小晶粒尺寸范围是同时管理金属结构材料的高强度和高韧性的最有效方法之一。然而,低于某些晶粒尺寸(通常约为 1 μm)时,一些金属材料会失去大部分拉伸延展性。在单轴拉伸应变和相关的拉伸成形过程中,在第一次屈服后立即开始颈缩。这又导致完全失去均匀的塑性变形,这是使用这些材料的严重缺陷。在这里,结合微观力学考虑的新宏观力学方法被用来解释材料科学和工程中这个长期存在的谜团。该方法基于屈服点现象和在 Luders 前沿必然产生的应力状态。使用简单的新材料模型和新的应变硬化定律,可以清楚地表明,在临界晶粒尺寸以下,展开 Luders 带所需的标称应力可能高于抗拉强度。这总是导致一种特殊形式的塑性不稳定和均匀塑性变形的完全丧失。微观和宏观力学方面的考虑、实验、分析计算和广泛的有限元计算结合在这项综合研究中,并很好地结合在一起。此外,屈服点现象的许多特征(上下屈服强度、简单和复杂 Luders 带的扩展、Luders 区域内的应力波动)和 Hall-Petch 关系现在可以以新的一致方式理解. 在临界晶粒尺寸以下,展开 Luders 带所需的标称应力可能高于抗拉强度。这总是导致一种特殊形式的塑性不稳定和均匀塑性变形的完全丧失。微观和宏观力学方面的考虑、实验、分析计算和广泛的有限元计算结合在这项综合研究中,并很好地结合在一起。此外,屈服点现象的许多特征(上下屈服强度、简单和复杂 Luders 带的扩展、Luders 区域内的应力波动)和 Hall-Petch 关系现在可以以新的一致方式理解. 在临界晶粒尺寸以下,展开 Luders 带所需的标称应力可能高于抗拉强度。这总是导致一种特殊形式的塑性不稳定和均匀塑性变形的完全丧失。微观和宏观力学方面的考虑、实验、分析计算和广泛的有限元计算结合在这项综合研究中,并很好地结合在一起。此外,屈服点现象的许多特征(上下屈服强度、简单和复杂 Luders 带的扩展、Luders 区域内的应力波动)和 Hall-Petch 关系现在可以以新的一致方式理解. 这总是导致一种特殊形式的塑性不稳定和均匀塑性变形的完全丧失。微观和宏观力学方面的考虑、实验、分析计算和广泛的有限元计算结合在这项综合研究中,并很好地结合在一起。此外,屈服点现象的许多特征(上下屈服强度、简单和复杂 Luders 带的扩展、Luders 区域内的应力波动)和 Hall-Petch 关系现在可以以新的一致方式理解. 这总是导致一种特殊形式的塑性不稳定和均匀塑性变形的完全丧失。微观和宏观力学方面的考虑、实验、分析计算和广泛的有限元计算结合在这项综合研究中,并很好地结合在一起。此外,屈服点现象的许多特征(上下屈服强度、简单和复杂 Luders 带的扩展、Luders 区域内的应力波动)和 Hall-Petch 关系现在可以以新的一致方式理解.
更新日期:2019-02-01
down
wechat
bug