当前位置: X-MOL 学术Int. J. Plasticity › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale precipitation and its influence on strengthening mechanisms in an ultra-high strength low-carbon steel
International Journal of Plasticity ( IF 9.8 ) Pub Date : 2019-02-01 , DOI: 10.1016/j.ijplas.2018.09.009
S.S. Xu , Y. Zhao , D. Chen , L.W. Sun , L. Chen , X. Tong , C.T. Liu , Z.W. Zhang

Abstract Nanoscale precipitation and its influence on the strengthening mechanisms in low-carbon ultra-high-strength steel, hot-rolled at different temperatures and subjected to various isothermal aging conditions, are studied. The steel has a yield strength of ∼1730 MPa and elongation-to-failure of ∼13% under the peak aging condition, of which ∼740 MPa is contributed by precipitation strengthening. The precipitation strengthening mechanisms, including both the shearing mechanism and the Orowan mechanism, are quantitatively analyzed based on the mechanical properties and precipitate properties determined by small-angle neutron scattering, and atom probe tomography (APT). The APT results show that the average Guinier radius of the nanoscale precipitates under the peak aging condition is 1.4 nm at a number density of 6.19 × 1023 m − 3 . These nanoscale precipitates consist of a Cu-enriched core, in which the depletion of Fe and enrichment of Cu change monotonically towards the center of the precipitates, whereas the concentrations of Ni, Al, and Mn exhibit diffused enrichment near the precipitate-matrix interfaces. Until the peak aging, precipitation strengthening mainly arises from shearing mechanism, among which the order and modulus strengthening mechanisms play the most significant role. Beyond peak aging, the shearing mechanism is not valid and the Orowan mechanism is the dominant contributor to the increase in yield strength due to the coarsening of the precipitates. The effect of the matrix microstructure on strength is also addressed and discussed.

中文翻译:

纳米级析出及其对超高强度低碳钢强化机制的影响

摘要 研究了不同温度热轧和不同等温时效条件下的低碳超高强钢的纳米级析出及其对强化机制的影响。在峰值时效条件下,该钢的屈服强度为~1730 MPa,断裂伸长率为~13%,其中~740 MPa 由沉淀强化贡献。基于小角度中子散射和原子探针断层扫描(APT)确定的力学性能和沉淀物性质,定量分析了沉淀强化机制,包括剪切机制和Orowan机制。APT 结果表明,在峰值时效条件下,纳米级析出物的平均吉尼尔半径为 1.4 nm,数量密度为 6.19 × 1023 m - 3 。这些纳米级沉淀物由富含铜的核心组成,其中 Fe 的消耗和 Cu 的富集向沉淀物中心单调变化,而 Ni、Al 和 Mn 的浓度在沉淀物-基质界面附近表现出扩散富集。直至达到峰值时效,沉淀强化主要来自剪切机制,其中阶次和模量强化机制起最重要的作用。除了峰值时效之外,剪切机制无效,由于析出物粗化,Orowan 机制是屈服强度增加的主要贡献者。还讨论和讨论了基体微观结构对强度的影响。其中 Fe 的消耗和 Cu 的富集朝着沉淀物的中心单调变化,而 Ni、Al 和 Mn 的浓度在沉淀物-基体界面附近表现出扩散的富集。直至达到峰值时效,沉淀强化主要来自剪切机制,其中阶次和模量强化机制起最重要的作用。除了峰值时效之外,剪切机制无效,由于析出物粗化,Orowan 机制是屈服强度增加的主要贡献者。还讨论和讨论了基体微观结构对强度的影响。其中 Fe 的消耗和 Cu 的富集朝着沉淀物的中心单调变化,而 Ni、Al 和 Mn 的浓度在沉淀物-基体界面附近表现出扩散的富集。直至达到峰值时效,沉淀强化主要来自剪切机制,其中阶次和模量强化机制起最重要的作用。除了峰值时效之外,剪切机制无效,由于析出物粗化,Orowan 机制是屈服强度增加的主要贡献者。还讨论和讨论了基体微观结构对强度的影响。沉淀强化主要来源于剪切机制,其中阶次和模量强化机制发挥了最重要的作用。除了峰值时效之外,剪切机制无效,由于析出物粗化,Orowan 机制是屈服强度增加的主要贡献者。还讨论和讨论了基体微观结构对强度的影响。沉淀强化主要来源于剪切机制,其中阶次和模量强化机制发挥了最重要的作用。除了峰值时效之外,剪切机制无效,由于析出物粗化,Orowan 机制是屈服强度增加的主要贡献者。还讨论和讨论了基体微观结构对强度的影响。
更新日期:2019-02-01
down
wechat
bug