当前位置: X-MOL 学术IEEE Trans. Ind. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electromechanical coupling mechanism and control strategy for in-wheel motor driven electric vehicles
IEEE Transactions on Industrial Electronics ( IF 7.7 ) Pub Date : 2019-06-01 , DOI: 10.1109/tie.2018.2863204
Zhe Li , Ling Zheng , Wenyun Gao , Zhenfei Zhan

This paper presents a control methodology for solving the vibration issues emerged in in-wheel motor electric vehicles (IWM-EVs). Unlike existing techniques and methods, the proposed investigation focuses on the electromechanical coupling effects between the subsystems in IWM-EV, which were considered as another negative effects bought by power integration. To this aim, an integrated model which describes the dynamic coupling process between electromagnetic excitation in motor and transient dynamics in vehicle is established and developed. The characteristics of the electromechanically motivated harassment are discussed and its coupling mechanism is analyzed. The key factors are extracted and adopted as the feedback signals in the design of control methods. The effectiveness verification is conducted within numerous practical scenario of vehicle dynamics. Theoretical analysis and simulation results reveal that the proposed approaches can prevent further enlargement of air-gap deformation and unbalanced electromagnetic excitation by cutting off the electromagnetic force outputting periodically, which are benefitted to attenuate the negative issues arisen by electromechanical coupling in IWM-EV. In addition, a more balanced outcome in vehicle dynamics is achieved by the independent-phase chopping method with a less side effect on output torque and speed tracking ability.

中文翻译:

轮毂电机驱动电动汽车机电耦合机理及控制策略

本文提出了一种用于解决轮毂电机电动汽车 (IWM-EV) 中出现的振动问题的控制方法。与现有的技术和方法不同,拟议的研究侧重于 IWM-EV 中子系统之间的机电耦合效应,这被认为是功率集成带来的另一个负面影响。为此,建立并开发了描述电机电磁激励与车辆瞬态动力学之间的动态耦合过程的集成模型。讨论了机电式骚扰的特点,分析了其耦合机制。提取关键因素作为控制方法设计的反馈信号。有效性验证是在车辆动力学的众多实际场景中进行的。理论分析和仿真结果表明,所提出的方法可以通过切断周期性输出的电磁力来防止气隙变形和不平衡电磁激励的进一步扩大,这有利于减弱 IWM-EV 机电耦合产生的负面问题。此外,通过独立相位斩波方法实现了更平衡的车辆动力学结果,对输出扭矩和速度跟踪能力的副作用更小。理论分析和仿真结果表明,所提出的方法可以通过切断周期性输出的电磁力来防止气隙变形和不平衡电磁激励的进一步扩大,这有利于减弱 IWM-EV 机电耦合产生的负面问题。此外,通过独立相位斩波方法实现了更平衡的车辆动力学结果,对输出扭矩和速度跟踪能力的副作用更小。理论分析和仿真结果表明,所提出的方法可以通过切断周期性输出的电磁力来防止气隙变形和不平衡电磁激励的进一步扩大,这有利于减弱 IWM-EV 机电耦合产生的负面问题。此外,通过独立相位斩波方法实现了更平衡的车辆动力学结果,对输出扭矩和速度跟踪能力的副作用更小。
更新日期:2019-06-01
down
wechat
bug