当前位置: X-MOL 学术Annu. Rev. Phys. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics at Conical Intersections
Annual Review of Physical Chemistry ( IF 14.7 ) Pub Date : 2018-04-20 00:00:00 , DOI: 10.1146/annurev-physchem-052516-050721
Michael S. Schuurman 1, 2 , Albert Stolow 1, 2, 3
Affiliation  

The nonadiabatic coupling of electronic and vibrational degrees of freedom is the defining feature of electronically excited states of polyatomic molecules. Once considered a theoretical curiosity, conical intersections (CIs) are now generally accepted as being the dominant source of coupled charge and vibrational energy flow in molecular excited states. Passage through CIs leads to the conversion of electronic to vibrational energy, which drives the ensuing photochemistry, isomerization being a canonical example. It has often been remarked that the CI may be thought of as a transition state in the excited state. As such, we expect that both the direction and the velocity of approach to the CI will matter. We explore this suggestion by looking for dynamical aspects of passage through CIs and for analogies with well-known concepts from ground-state reaction dynamics. Great progress has been made in the development of both experimental techniques and ab initio dynamics simulations, to a degree that direct comparisons may now be made. Here we compare time-resolved photoelectron spectroscopy results with on-the-fly ab initio multiple spawning calculations of the experimental observables, thereby validating each. We adopt a phenomenological approach and specifically concentrate on the excited-state dynamics of the C=C bond in unsaturated hydrocarbons. In particular, we make use of selective chemical substitution (such as replacing an H atom by a methyl group) so as to alter the inertia of certain vibrations relative to others, thus systematically varying (mass-weighted) directions and velocities of approach to a CI. Chemical substituents, however, may affect both the nuclear and electronic components of the total wave function. The former, which we call an inertial effect, influences the direction and velocity of approach. The latter, which we call a potential effect, modifies the electronic structure and therefore the energetic location and topography of the potential energy surfaces involved. Using a series of examples, we discuss both types of effects. We argue that there is a need for dynamical pictures and simple models of nonadiabatic dynamics at CIs and hope that the phenomenology presented here will help inspire such developments.

中文翻译:


圆锥形交叉口的动力学

电子和振动自由度的非绝热耦合是多原子分子电子激发态的基本特征。一旦考虑到理论上的好奇心,圆锥形交叉点(CIs)现在通常被认为是分子激发态中电荷和振动能流耦合的主要来源。通过CI会导致电子转换为振动能,从而驱动随后的光化学反应,异构化就是一个典型的例子。人们经常指出,CI可以被认为是激发态的过渡态。因此,我们期望接近CI的方向和速度都将很重要。我们通过寻找通过CI的动力学方面以及与基态反应动力学中众所周知概念的类比来探索这一建议。在实验技术和从头算动力学模拟的开发方面都取得了巨大的进步,在某种程度上,现在可以进行直接比较了。在这里,我们将时间分辨的光电子能谱结果与实验可观察物的动态从头算起多次生成计算进行比较,从而进行验证。我们采用现象学的方法,特别关注不饱和烃中C = C键的激发态动力学。特别是,我们利用选择性化学取代(例如用甲基取代H原子)来改变某些振动相对于其他振动的惯性,因此系统地改变(质量加权)CI的方向和速度。但是,化学取代基可能会影响总波函数的核和电子成分。前者,我们称为惯性效应,会影响进近的方向和速度。后者,我们称为势能,改变了电子结构,因此改变了所涉及的势能表面的能量位置和形貌。使用一系列示例,我们讨论两种类型的效果。我们认为,在CI上需要动态图片和非绝热动力学的简单模型,并希望此处介绍的现象学将有助于激发这种发展。可能会影响总波函数的核和电子组件。前者,我们称为惯性效应,会影响进近的方向和速度。后者,我们称为势能,改变了电子结构,因此改变了所涉及的势能表面的能量位置和形貌。使用一系列示例,我们讨论两种类型的效果。我们认为,在CI上需要动态图片和非绝热动力学的简单模型,并希望此处介绍的现象学将有助于激发这种发展。可能会影响总波函数的核和电子组件。前者,我们称为惯性效应,会影响进近的方向和速度。后者,我们称为势能,改变了电子结构,因此改变了所涉及的势能表面的能量位置和形貌。使用一系列示例,我们讨论两种类型的效果。我们认为,在CI上需要动态图片和非绝热动力学的简单模型,并希望此处介绍的现象学将有助于激发这种发展。改变了电子结构,因此改变了所涉及的势能面的能量位置和形貌。使用一系列示例,我们讨论两种类型的效果。我们认为,在CI上需要动态图片和非绝热动力学的简单模型,并希望此处介绍的现象学将有助于激发这种发展。修改了电子结构,从而修改了所涉及的势能面的能量位置和形貌。使用一系列示例,我们讨论两种类型的效果。我们认为,在CI上需要动态图片和非绝热动力学的简单模型,并希望此处介绍的现象学将有助于激发这种发展。

更新日期:2018-04-20
down
wechat
bug