当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A physics-based approach to modeling real-fuel combustion chemistry – II. Reaction kinetic models of jet and rocket fuels
Combustion and Flame ( IF 4.4 ) Pub Date : 2018-04-10
Rui Xu, Kun Wang, Sayak Banerjee, Jiankun Shao, Tom Parise, Yangye Zhu, Shengkai Wang, Ashkan Movaghar, Dong Joon Lee, Runhua Zhao, Xu Han, Yang Gao, Tianfeng Lu, Kenneth Brezinsky, Fokion N. Egolfopoulos, David F. Davidson, Ronald K. Hanson, Craig T. Bowman, Hai Wang

We propose and test an alternative approach to modeling high-temperature combustion chemistry of multicomponent real fuels. The hybrid chemistry (HyChem) approach decouples fuel pyrolysis from the oxidation of fuel pyrolysis products. The pyrolysis (or oxidative pyrolysis) process is modeled by seven lumped reaction steps in which the stoichiometric and reaction rate coefficients are derived from experiments. The oxidation process is described by detailed chemistry of foundational hydrocarbon fuels. We present results obtained for three conventional jet fuels and two rocket fuels as examples. Modeling results demonstrate that HyChem models are capable of predicting a wide range of combustion properties, including ignition delay times, laminar flame speeds, and non-premixed flame extinction strain rates of all five fuels. Sensitivity analysis shows that for conventional, petroleum-derived real fuels, the uncertainties in the experimental measurements of C2H4 and CH4 impact model predictions to an extent, but the largest influence of the model predictability stems from the uncertainties of the foundational fuel chemistry model used (USC Mech II). In addition, we introduce an approach in the realm of the HyChem approach to address the need to predict the negative-temperature coefficient (NTC) behaviors of jet fuels, in which the CH2O speciation history is proposed to be a viable NTC-activity marker for model development. Finally, the paper shows that the HyChem model can be reduced to about 30 species in size to enable turbulent combustion modeling of real fuels with a testable chemistry model.



中文翻译:

基于物理的方法对真实燃料燃烧化学进行建模– II。喷气和火箭燃料的反应动力学模型

我们提出并测试了对多组分真实燃料的高温燃烧化学进行建模的替代方法。该HY布里德化学istry(HyChem)方法使燃料热解与燃料热解产物的氧化脱钩。热解(或氧化热解)过程通过七个集总反应步骤建模,其中化学计量和反应速率系数来自实验。氧化过程由基础烃类燃料的详细化学描述。我们以三种常规喷气燃料和两种火箭燃料为例给出了结果。建模结果表明,HyChem模型能够预测广泛的燃烧特性,包括所有五种燃料的点火延迟时间,层流火焰速度和非预混火焰熄灭应变率。敏感性分析表明,对于常规的石油衍生的真实燃料,C 2实验测量的不确定性H 4和CH 4影响模型预测的程度,但是模型可预测性的最大影响源于所使用的基础燃料化学模型(USC Mech II)的不确定性。此外,我们在HyChem方法领域引入了一种方法,以满足预测喷气燃料的负温度系数(NTC)行为的需要,其中CH 2 O的形成史被认为是可行的NTC活性。模型开发的标记。最后,论文表明,HyChem模型的大小可以减少到约30种,从而能够使用可测试的化学模型对真实燃料进行湍流燃烧建模。

更新日期:2018-04-11
down
wechat
bug