当前位置: X-MOL 学术J. Mater. Process. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hyperplasticity mechanism in DP600 sheets during electrohydraulic free forming
Journal of Materials Processing Technology ( IF 6.3 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.jmatprotec.2019.116582
Qiuli Zheng , Haiping Yu

Abstract This work discussed the multi-scale mechanisms of hyperplasticity during the high strain rate electrohydraulic forming (EHF) process by exploring the formability of DP600 sheets in a state of uniaxial tensile stress. The experimental results showed that the limit strains and limit dome heights of the deformed specimens obtained by EHF were improved by 15 %–27 % and 22.54 %, respectively, as compared with quasi-static specimens, showing a hyperplasticity characteristic. The inertial effects that occurred during the EHF process were responsible for the macro-scale enhancement in terms of formability, which could generate an additional principal stress along the direction of stretching that slowed the velocity gradient of the necked elements to restrain uneven deformation, resulting in a 60 % broadening of the action zone of maximum Y-displacement. The proportion of inertial effects that contributed to the plastic deformation of the deformed specimens was 87.1 %, indicating that the vast majority of the deformation in the EHF process occurred as a result of inertial effects after the electrical energy was completely discharged. A larger dislocation density and a more uniform dislocation distribution were observed in the EHF specimens, which were regarded as the micro-scale causes of the hyperplasticity in the EHF process. Multiplication and entanglement of dislocations caused by the significant shear stress, together with the extensive nucleation of new dislocations caused by the high strain rates, demonstrated the micro-scale mechanism of hyperplasticity during EHF.

中文翻译:

DP600板材电液自由成形过程中的超塑性机理

摘要 本工作通过探索 DP600 板材在单轴拉伸应力状态下的可成形性,讨论了高应变率电液成形 (EHF) 过程中的多尺度超塑性机制。实验结果表明,与准静态试样相比,EHF 获得的变形试样的极限应变和极限圆顶高度分别提高了 15 % ~ 27 % 和 22.54 %,表现出超塑性特性。在 EHF 过程中发生的惯性效应是可成形性宏观尺度增强的原因,这可以沿拉伸方向产生额外的主应力,减缓颈缩元件的速度梯度,抑制不均匀变形,导致最大 Y 位移的作用区域扩大 60%。惯性效应促成变形试样塑性变形的比例为87.1%,表明EHF过程中绝大多数变形是电能完全放电后惯性效应的结果。在 EHF 试样中观察到更大的位错密度和更均匀的位错分布,这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。惯性效应促成变形试样塑性变形的比例为87.1%,表明EHF过程中绝大多数变形是电能完全放电后惯性效应的结果。在 EHF 试样中观察到更大的位错密度和更均匀的位错分布,这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。惯性效应促成变形试样塑性变形的比例为87.1%,表明EHF过程中绝大多数变形是电能完全放电后惯性效应的结果。在 EHF 试样中观察到更大的位错密度和更均匀的位错分布,这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。表明 EHF 过程中的绝大多数变形是电能完全放电后惯性效应的结果。在 EHF 试样中观察到更大的位错密度和更均匀的位错分布,这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。表明 EHF 过程中的绝大多数变形是电能完全放电后惯性效应的结果。在 EHF 试样中观察到更大的位错密度和更均匀的位错分布,这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。这被认为是 EHF 过程中增生的微观原因。由显着剪切应力引起的位错的增殖和纠缠,以及由高应变率引起的新位错的广泛成核,证明了 EHF 过程中超塑性的微观机制。
更新日期:2020-05-01
down
wechat
bug