当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stability and Sensing Enhancement by Nanocubic CeO2 with {100} Polar Facets on Graphene for NO2 at Room Temperature.
ACS Applied Materials & Interfaces ( IF 9.5 ) Pub Date : 2020-01-15 , DOI: 10.1021/acsami.9b18155
Lizhai Zhang 1, 2 , Jinniu Zhang 3 , Yuhong Huang 3 , Huiyan Xu 1, 4 , Xiaolin Zhang 1 , Hongbing Lu 3 , Kewei Xu 2, 5 , Paul K Chu 1 , Fei Ma 1, 2
Affiliation  

Metal oxides with a polar surface interact strongly with polar NO2 molecules, thus facilitating sensitive detection of NO2. In this work, the composites comprising graphene and cubic CeO2 nanoparticles with the {100} polar surface are prepared by a hydrothermal technique, and they exhibit fast response, excellent selectivity, stable recovery, and sensitive detection with a low detection limitation of 1 ppm for NO2 at room temperature. According to the first-principle calculations, the adsorption energy of NO2 on the CeO2{100} polar surface is the most negative corresponding to the strongest interactions between them. The formation energy of oxygen vacancies (Ov) on the {100} polar plane is also negative, and the abundant Ov facilitates the adsorption of NO2. The internal electric field near the polar surface promotes the charge separation and accelerates the charge exchange between NO2 and the composites. In addition, graphene promotes electron transfer at the interface and improves the stability of the CeO2{100} polar surface. The composites of graphene and metal oxides with a polar surface are excellent for NO2 detection, and the discovery reveals a new sensing strategy.

中文翻译:

纳米立方CeO2在室温下在石墨烯上具有{100}极性刻面对NO2的稳定性和传感增强。

具有极性表面的金属氧化物会与极性NO2分子强烈相互作用,从而有助于灵敏地检测NO2。在这项工作中,由石墨烯和具有{100}极性表面的立方CeO2纳米颗粒组成的复合材料是通过水热技术制备的,它们显示出快速响应,出色的选择性,稳定的回收率和灵敏的检测特性,且检测限为1 ppm。室温下为NO2。根据第一性原理计算,CeO2 {100}极性表面上NO2的吸附能是最大的负值,对应于它们之间最强的相互作用。{100}极性面上的氧空位(Ov)的形成能也为负,并且丰富的Ov促进了NO2的吸附。极性表面附近的内部电场促进电荷分离,并加速NO2与复合材料之间的电荷交换。另外,石墨烯促进了界面处的电子转移并改善了CeO2 {100}极性表面的稳定性。具有极性表面的石墨烯和金属氧化物的复合材料非常适合用于NO2检测,这一发现揭示了一种新的传感策略。
更新日期:2020-01-16
down
wechat
bug