当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Chemical mechanism of chemical mechanical polishing of tungsten cobalt cemented carbide inserts
International Journal of Refractory Metals & Hard Materials ( IF 3.407 ) Pub Date : 2020-01-02 , DOI: 10.1016/j.ijrmhm.2020.105179
Meijiao Mao, Wentao Chen, Jingli Liu, Zihua Hu, Changjiang Qin

To explore the chemical mechanism of tungsten‑cobalt cemented carbide inserts in H2O2-based polishing fluid. Before and after the YG8 cemented carbide inserts were corroded, surface phase, element and structure were characterized by XRD and SEM/EDS. The chemical mechanism of tungsten‑cobalt carbide inserts during chemical mechanical polishing (CMP) was analyzed. XPS was utilized to analyze the corrosion products formed on the surface of YG8 cemented carbide inserts during chemical reaction to determine the chemical reaction equation. In the H2O2 environment, the electrode potential of the Co layer at the boundary between the binder phase with larger crystal domains and the hard phase is greater than the electrode potential of the intermediate layer γ(Co-W-C solid solution) phase and WC, which creates a potential difference between the three, and occurs galvanic corrosion. The hard phase WC is protected as the cathode of the entire battery and has a tendency to stabilize. The Co layer at the phase boundary is the most anode feature to be corroded and dissolved first. The γ phase of the intermediate layer serves as the secondary anode feature and serves also as the cathode of the Co layer. When the Co layer at the phase boundary is corroded to a certain extent, a galvanic couple is formed between the γ phase and the testing phase WC to cause corrosion. In addition, the binder phase with smaller crystal domains directly forms galvanic corrosion with WC. The chemical products created on the surface of the blades are Co3O4 and WO3. However, Co3O4 and WO3 oxide films are small in size and have little effect on material removal during polishing. When the binder phase corrosion on the blades surface reaches a critical point, the stress exerted by the polishing abrasive is basically concentrated on the WC particle surface. The strength of the WC particles that have lost the supporting effect of the binder phase becomes low and the structure becomes brittle. Under the mechanical scratching and compressive stress of the abrasive particles of the polishing solution, the smaller WC particles are directly pulled out. The surface layer of the larger WC particles is broken into WC grains, and then the surface layer is mechanically removed.
更新日期:2020-01-02

 

全部期刊列表>>
胸部和胸部成像专题
自然科研论文编辑服务
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
鲁照永
华东师范大学
苏州大学
南京工业大学
南开大学
中科大
唐勇
跟Nature、Science文章学绘图
隐藏1h前已浏览文章
中洪博元
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
广东实验室
南京大学
王杰
南科大
刘尊峰
湖南大学
清华大学
王小野
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug