当前位置: X-MOL 学术Curr. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Medicago-Sinorhizobium-Ralstonia Co-infection Reveals Legume Nodules as Pathogen Confined Infection Sites Developing Weak Defenses.
Current Biology ( IF 9.2 ) Pub Date : 2019-12-24 , DOI: 10.1016/j.cub.2019.11.066
Claire Benezech 1 , Fathi Berrabah 2 , Marie-Françoise Jardinaud 1 , Alexandre Le Scornet 1 , Marine Milhes 3 , Gaofei Jiang 1 , Jeoffrey George 2 , Pascal Ratet 2 , Fabienne Vailleau 1 , Benjamin Gourion 1
Affiliation  

Legumes have the capacity to develop root nodules hosting nitrogen-fixing bacteria, called rhizobia. For the plant, the benefit of the symbiosis is important in nitrogen-deprived conditions, but it requires hosting and feeding massive numbers of rhizobia. Recent studies suggest that innate immunity is reduced or suppressed within nodules [1-10]; this likely maintains viable rhizobial populations. To evaluate the potential consequences and risks associated with an altered immuni`ty in the symbiotic organ, we developed a tripartite system with the model legume Medicago truncatula [11, 12], its nodulating symbiont of the genus Sinorhizobium (syn. Ensifer) [13, 14], and the pathogenic soil-borne bacterium Ralstonia solanacearum [15-18]. We show that nodules are frequent infection sites where pathogen multiplication is comparable to that in the root tips and independent of nodule ability to fix nitrogen. Transcriptomic analyses indicate that, despite the presence of the hosted rhizobia, nodules are able to develop weak defense reactions against pathogenic R. solanacearum. Nodule defense response displays specificity compared to that activated in roots. In agreement with nodule innate immunity, optimal R. solanacearum growth requires pathogen virulence factors. Finally, our data indicate that the high susceptibility of nodules is counterbalanced by the existence of a diffusion barrier preventing pathogen spreading from nodules to the rest of the plant.

中文翻译:

苜蓿-根瘤菌-罗氏菌共感染揭示了豆科小结节,因为病原体限制了感染部位的发展,因此防御能力较弱。

豆科植物具有发展根瘤的能力,这些根瘤可容纳固氮菌,称为根瘤菌。对于植物而言,共生的益处在氮缺乏的条件下很重要,但它需要寄养和喂养大量的根瘤菌。最近的研究表明,结节内固有的免疫力降低或受到抑制[1-10]。这可能会维持可行的根瘤菌种群。为了评估与共生器官免疫力改变相关的潜在后果和风险,我们开发了一种三叶草系统,其模型为豆科植物紫花苜蓿[11,12],它是根瘤菌根瘤菌属(Synrhizobium(syn。Ensifer))[13]的结节生物。 ,14],和致病性土壤传播细菌青枯雷尔氏菌[15-18]。我们显示,根瘤是常见的感染部位,其中病原体繁殖与根尖中的病原菌增殖相当,并且与根瘤固定氮的能力无关。转录组学分析表明,尽管存在寄主的根瘤菌,但结节仍能够对病原性茄形青枯菌产生微弱的防御反应。与根部激活的结节相比,结节防御反应显示出特异性。与结节固有免疫一致,青枯菌的最佳生长需要病原体毒力因子。最后,我们的数据表明,结核病的高易感性通过防止病原体从结核扩散到植物其余部分的扩散屏障的存在而得到抵消。尽管存在寄主的根瘤菌,但结节仍能够对病原性茄枯萎菌产生微弱的防御反应。与根部激活的结节相比,结节防御反应显示出特异性。与结节固有免疫一致,青枯菌的最佳生长需要病原体毒力因子。最后,我们的数据表明,结核病的高易感性通过防止病原体从结核扩散到植物其余部分的扩散屏障的存在而得到抵消。尽管存在寄主的根瘤菌,但结节仍能够对病原性茄枯萎菌产生微弱的防御反应。与根部激活的结节相比,结节防御反应显示出特异性。与结节固有免疫一致,青枯菌的最佳生长需要病原体毒力因子。最后,我们的数据表明,结核病的高易感性通过防止病原体从结核扩散到植物其余部分的扩散屏障的存在而得到抵消。
更新日期:2020-01-02
down
wechat
bug