当前位置: X-MOL 学术Biochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
X-ray Crystal Structures of the Influenza M2 Proton Channel Drug-Resistant V27A Mutant Bound to a Spiro-Adamantyl Amine Inhibitor Reveal the Mechanism of Adamantane Resistance.
Biochemistry ( IF 2.9 ) Pub Date : 2020-01-13 , DOI: 10.1021/acs.biochem.9b00971
Jessica L Thomaston 1, 2 , Athina Konstantinidi 3 , Lijun Liu 4, 5 , George Lambrinidis 3 , Jingquan Tan 2 , Martin Caffrey 2 , Jun Wang 6 , William F Degrado 1 , Antonios Kolocouris 3
Affiliation  

The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.

中文翻译:

绑定到螺金刚烷胺抑制剂的M2流感质子通道抗药性V27A突变体的X射线晶体结构揭示了金刚烷抗性的机制。

V27A突变在A型流感基质2(M2)质子通道上赋予金刚烷抗性,并在流通的A型流感病毒人群中变得越来越普遍。我们已经使用X射线晶体学来确定螺内金刚烷基胺抑制剂的结构,该螺内金属构型与M2(22-46)V27A以及M2(21-61)V27A结合。螺-金刚烷基胺结合位点对于两个晶体结构几乎相同。与在位置27有缬氨酸的M2“野生型”(WT)相比,我们观察到由于V27A突变,通道孔在其N端更宽,并且去除了对V27A重要的V27侧链疏水相互作用金刚烷胺和金刚乙胺的结合。螺金刚烷基胺抑制剂通过改变孔中的结合位点(取决于位置27上存在的残基)来阻断WT和V27A突变体通道中的质子传导。此外,在M2(21-61)V27A构建体的结构中,通道的C末端相对于M2(22-46)构建体的C末端紧密堆积。我们观察到,残基Asp44,Arg45和Phe48面对通道孔的中心,并且在通过His37门后与通过M2通道离开的质子相互作用的位置很好。M2(22-46)V27A-螺金刚烷基胺配合物的300 ns分子动力学模拟可准确预测M2(22-46)V27A的X射线晶体结构中孔内配体和水的位置复杂的。此外,在M2(21-61)V27A构建体的结构中,通道的C端相对于M2(22-46)构建体的C端紧密堆积。我们观察到,残基Asp44,Arg45和Phe48面对通道孔的中心,并且在通过His37门后与通过M2通道离开的质子相互作用的位置很好。M2(22-46)V27A-螺金刚烷基胺配合物的300 ns分子动力学模拟可准确预测M2(22-46)V27A的X射线晶体结构中孔内配体和水的位置复杂的。此外,在M2(21-61)V27A构建体的结构中,通道的C端相对于M2(22-46)构建体的C端紧密堆积。我们观察到,残基Asp44,Arg45和Phe48面对通道孔的中心,并且在通过His37门后与通过M2通道离开的质子相互作用的位置很好。M2(22-46)V27A-螺金刚烷基胺配合物的300 ns分子动力学模拟可准确预测M2(22-46)V27A的X射线晶体结构中孔内配体和水的位置复杂的。Phe48和Phe48面对通道孔的中心,并且位置适当,可以与穿过His37门的离开M2通道的质子相互作用。M2(22-46)V27A-螺金刚烷基胺配合物的300 ns分子动力学模拟可准确预测M2(22-46)V27A的X射线晶体结构中孔内配体和水的位置复杂的。Phe48和Phe48面对通道孔的中心,并且位置适当,可以与穿过His37门的离开M2通道的质子相互作用。M2(22-46)V27A-螺金刚烷基胺配合物的300 ns分子动力学模拟可准确预测M2(22-46)V27A的X射线晶体结构中孔内配体和水的位置复杂的。
更新日期:2020-01-13
down
wechat
bug