当前位置: X-MOL 学术Carbon › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micromechanical properties of pyrolytic carbon with interlayer crosslink
Carbon ( IF 10.9 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.carbon.2019.12.096
MingWei Chen , Bao Wu , LiChuan Zhou , YinBo Zhu , HengAn Wu

Abstract Pyrolytic carbon (PyC) materials are laminar deposits formed from the high-temperature pyrolytic reaction of volatile hydrocarbons. The outstanding mechanical performance of PyC renders it attractive as interfacial materials in aerospace applications and thermonuclear fusion. But the deposition process of PyC under extreme conditions in particular makes it challenging to achieve large-sized specimens used in further cognition on processing-microstructure-property relationship for PyC materials. Toward recent molecular insights into the initial formation of PyC [Carbon 148 (2019) 307–316], we herein performed molecular dynamics simulations to investigate the micromechanical properties of PyC with the consideration of interlayer crosslinks. Under out-of-plane uniaxial tension, moderate numbers of interlayer crosslinks can significantly enhance the mechanical properties of PyC. Meanwhile, the increase of interlayer crosslinks will improve the energy dissipation through local and multilayer delamination and tearing. Interlayer crosslinks can provide strong junctions between adjacent layers to bear out-of-plane shear deformation effectively. While under in-plane tension or shearing, the mechanical properties of PyC are weakened due to intralayer pore defects introduced by interlayer crosslinks. Moreover, tension-compression asymmetry of PyC is found at nanoscale. Graphene layers with interlayer crosslinks experience kink-like puckering deformation in the in-plane compression, while they only straighten in the in-plane stretching before failure.

中文翻译:

具有层间交联的热解碳的微观力学性能

摘要 热解碳(PyC)材料是挥发性碳氢化合物高温热解反应形成的层状沉积物。PyC 出色的机械性能使其在航空航天应用和热核聚变中作为界面材料具有吸引力。但特别是在极端条件下 PyC 的沉积过程使得实现用于进一步认知 PyC 材料的加工-微观结构-性能关系的大尺寸样品具有挑战性。为了最近对 PyC [Carbon 148 (2019) 307-316] 初始形成的分子见解,我们在此进行了分子动力学模拟,以在考虑层间交联的情况下研究 PyC 的微观机械特性。在面外单轴张力下,适量的层间交联可以显着提高 PyC 的机械性能。同时,层间交联的增加将通过局部和多层分层和撕裂改善能量耗散。层间交联可以在相邻层之间提供强连接,以有效承受面外剪切变形。在面内张力或剪切作用下,由于层间交联引入的层内孔缺陷,PyC 的机械性能减弱。此外,在纳米尺度上发现了 PyC 的拉压不对称性。具有层间交联的石墨烯层在面内压缩时会经历类似扭结的褶皱变形,而它们仅在面内拉伸时才会在失效前变直。层间交联的增加将通过局部和多层分层和撕裂改善能量耗散。层间交联可以在相邻层之间提供强连接,以有效承受面外剪切变形。在面内张力或剪切作用下,由于层间交联引入的层内孔缺陷,PyC 的机械性能减弱。此外,在纳米尺度上发现了 PyC 的拉压不对称性。具有层间交联的石墨烯层在面内压缩时会经历类似扭结的褶皱变形,而它们仅在面内拉伸时才会在失效前变直。层间交联的增加将通过局部和多层分层和撕裂改善能量耗散。层间交联可以在相邻层之间提供强连接,以有效承受面外剪切变形。在面内张力或剪切作用下,由于层间交联引入的层内孔缺陷,PyC 的机械性能减弱。此外,在纳米尺度上发现了 PyC 的拉压不对称性。具有层间交联的石墨烯层在面内压缩时会经历类似扭结的褶皱变形,而它们仅在面内拉伸时才会在失效前变直。层间交联可以在相邻层之间提供强连接,以有效承受面外剪切变形。在面内张力或剪切作用下,由于层间交联引入的层内孔缺陷,PyC 的机械性能减弱。此外,在纳米尺度上发现了 PyC 的拉压不对称性。具有层间交联的石墨烯层在面内压缩时会经历类似扭结的褶皱变形,而它们仅在面内拉伸时才会在失效前变直。层间交联可以在相邻层之间提供强连接,以有效承受面外剪切变形。在面内张力或剪切作用下,由于层间交联引入的层内孔缺陷,PyC 的机械性能减弱。此外,在纳米尺度上发现了 PyC 的拉压不对称性。具有层间交联的石墨烯层在面内压缩时会经历类似扭结的褶皱变形,而它们仅在面内拉伸时才会在失效前变直。
更新日期:2020-04-01
down
wechat
bug