当前位置: X-MOL 学术ACS Appl. Nano Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Au–Graphene Oxide–Anodic Aluminum Oxide Nanostructured Substrates for Surface-Enhanced Raman Spectroscopy Based Molecular Sensing
ACS Applied Nano Materials ( IF 5.9 ) Pub Date : 2020-01-10 , DOI: 10.1021/acsanm.9b02575
Saraswati Behera 1 , Jonghyeok Im 1 , Kyoungsik Kim 1
Affiliation  

We present surface-enhanced Raman scattering (SERS) enhancement studies in a biocompatible and chemically stable plasmonic composite based on gold nanoparticle decorated graphene oxides deposited over multiscale anodized aluminum oxide nanostructures. The underlying nanostructure in the fabricated sample increases the optical density of states in graphene oxides through maximum interaction volume for an electromagnetic wave from localized hotspots, which is important for the Raman signal enhancement. All samples are prepared through cost-effective two-step anodization techniques followed by wet-etching and drop-casting. It is observed that graphene oxide (GO)/Au and reduced graphene oxide (rGO)/Au composites have enhanced the absorption in these nanostructures to more than 90% due to strong localization of the electromagnetic field through the enhanced plasmonic effect. The surface morphologies of GO, GO/Au, rGO, rGO/Au, and composite nanostructures are done through Field emission-scanning electron microscope (FE-SEM) and ImageJ analysis. Raman characterization studies present signal enhancement up to 29-fold in the fabricated SERS substrate and fluorescence quenching of rhodamine 6G (R6G) molecules that may be applicable in molecular level/biomolecular sensing. Finite diference time domain (FDTD) simulation matches with the experimental study with an enhancement to the local field up to a factor of 3.3 × 103 at 532 nm, which is even more in higher wavelengths.

中文翻译:

基于表面增强拉曼光谱的分子传感的金-石墨烯-阳极氧化铝纳米结构基底

我们目前在生物相容和化学稳定的等离激元复合材料中的表面增强拉曼散射(SERS)增强研究,该复合材料基于沉积在多尺度阳极氧化铝纳米结构上的金纳米颗粒装饰的氧化石墨烯。通过来自局部热点的电磁波的最大相互作用体积,制造出的样品中底层的纳米结构可提高氧化石墨烯中态的光密度,这对于拉曼信号增强很重要。所有样品均通过具有成本效益的两步阳极氧化技术制备,然后进行湿法蚀刻和滴铸。可以观察到,由于电磁场通过增强的等离激元效应的强烈局限性,氧化石墨烯(GO)/ Au和还原的氧化石墨烯(rGO)/ Au复合材料已将这些纳米结构中的吸收提高到90%以上。GO,GO / Au,rGO,rGO / Au和复合纳米结构的表面形态是通过场发射扫描电子显微镜(FE-SEM)和ImageJ分析完成的。拉曼表征研究显示,在制造的SERS基质中信号增强高达29倍,若丹明6G(R6G)分子的荧光猝灭可能适用于分子水平/生物分子传感。有限差分时域(FDTD)模拟与实验研究相匹配,对局部场的增强高达3.3×10倍 GO / Au,rGO,rGO / Au和复合纳米结构是通过场发射扫描电子显微镜(FE-SEM)和ImageJ分析完成的。拉曼表征研究显示,在制造的SERS基质中信号增强高达29倍,若丹明6G(R6G)分子的荧光猝灭可能适用于分子水平/生物分子传感。有限差分时域(FDTD)模拟与实验研究相匹配,对局部场的增强高达3.3×10倍 GO / Au,rGO,rGO / Au和复合纳米结构是通过场发射扫描电子显微镜(FE-SEM)和ImageJ分析完成的。拉曼表征研究显示,在制造的SERS基质中信号增强高达29倍,若丹明6G(R6G)分子的荧光猝灭可能适用于分子水平/生物分子传感。有限差分时域(FDTD)模拟与实验研究相匹配,对局部场的增强高达3.3×10倍 拉曼表征研究显示,在制造的SERS基质中信号增强高达29倍,若丹明6G(R6G)分子的荧光猝灭可能适用于分子水平/生物分子传感。有限差分时域(FDTD)模拟与实验研究相匹配,对局部场的增强高达3.3×10倍 拉曼表征研究显示,在制造的SERS基质中信号增强高达29倍,若丹明6G(R6G)分子的荧光猝灭可能适用于分子水平/生物分子传感。有限差分时域(FDTD)模拟与实验研究相匹配,对局部场的增强高达3.3×10倍3在532 nm处,在更高的波长下甚至更高。
更新日期:2020-01-10
down
wechat
bug