当前位置: X-MOL 学术Nano Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength.
Nano Letters ( IF 10.8 ) Pub Date : 2020-01-06 , DOI: 10.1021/acs.nanolett.9b04165
Amirhossein Alizadehkhaledi 1, 2 , Adriaan L Frencken 2, 3 , Frank C J M van Veggel 2, 3 , Reuven Gordon 1, 2
Affiliation  

Single-photon emitters based on individual atoms or individual atomic-like defects are highly sought-after components for future quantum technologies. A key challenge in this field is how to isolate just one such emitter; the best approaches still have an active emitter yield of only 50% so that deterministic integration of single active emitters is not yet possible. Here, we demonstrate the ability to isolate individual erbium emitters embedded in 20 nm nanocrystals of NaYF4 using plasmonic aperture optical tweezers. The optical tweezers capture the nanocrystal, whereas the plasmonic aperture enhances the emission of the Er and allows the measurement of discrete emission rate values corresponding to different numbers of erbium ions. Three separate synthesis runs show near-Poissonian distribution in the discrete levels of emission yield that correspond to the expected ion concentrations, indicating that the yield of active emitters is approximately 80%. Fortunately, the trap allows for selecting the nanocrystals with only a single emitter, and so this gives a route to isolating and integrating single emitters in a deterministic way. This demonstration is a promising step toward single-photon quantum information technologies that utilize single ions in a solid-state medium, particularly because Er emits in the low-loss fiber-optic 1550 nm telecom band.

中文翻译:

分离具有单个sol发射体的纳米晶体:在1550 nm波长处获得稳定的单光子源的途径。

基于单个原子或单个原子状缺陷的单光子发射器是未来量子技术中极受追捧的组件。该领域的主要挑战是如何仅隔离一个这样的发射器。最好的方法仍然是有源发射器的成品率仅为50%,因此无法确定性地集成单个有源发射器。在这里,我们展示了使用等离激元孔径光镊分离嵌入在NaYF4的20 nm纳米晶体中的单个individual发射体的能力。光学镊子捕获纳米晶体,而等离子体孔提高了Er的发射,并允许测量与不同数量的离子相对应的离散发射速率值。三个独立的合成运行显示,在发射功率的离散水平中接近Poissonian分布,这与预期的离子浓度相对应,表明有源发射器的产率约为80%。幸运的是,陷阱允许仅使用单个发射器来选择纳米晶体,因此这为确定性地隔离和集成单个发射器提供了一条途径。该演示是朝着在固态介质中利用单离子的单光子量子信息技术迈出的有希望的一步,特别是因为Er在低损耗的1550 nm光纤电信频段中发射。因此,这为确定性地隔离和集成单个发射器提供了一条途径。该演示是朝着在固态介质中利用单离子的单光子量子信息技术迈出的有希望的一步,特别是因为Er在低损耗的1550 nm光纤电信频段中发射。因此,这为确定性地隔离和集成单个发射器提供了一条途径。该演示是朝着在固态介质中利用单离子的单光子量子信息技术迈出的有希望的一步,特别是因为Er在低损耗的1550 nm光纤电信频段中发射。
更新日期:2020-01-06
down
wechat
bug