当前位置: X-MOL 学术Rev. Sci. Instrum. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical spectroscopy as a diagnostic tool for metal ion beam production with an ECRIS
Review of Scientific Instruments ( IF 1.6 ) Pub Date : 2019-12-01 , DOI: 10.1063/1.5127571
F Maimone 1 , J Mäder 1 , R Lang 1 , P T Patchakui 1 , K Tinschert 1 , R Hollinger 1
Affiliation  

At GSI, the CAPRICE ECRIS is used to provide heavy ion beams to the UNILAC (Universal Linear Accelerator) accelerator. In order to satisfy the demand of metal ion beams, a resistively heated oven is routinely used. This evaporation technique allows the ion beam production from natural and enriched solid elements or compounds with high efficiency and low material consumption. Often it is required to provide high charge state ion beams from rare or extremely rare isotopes as 48Ca, e.g., for the investigation of super heavy elements. In order to maintain the ion beam stable for the entire scheduled beam time, the plasma inside the ion source must remain as stable as possible. The tuning of ion source parameters and oven power affecting the oven temperature and, in turn, the evaporation rate is necessary. A strong relationship between the microwave power and the oven heating was observed, thus affecting the power control, the plasma stability, and the material consumption. Hence, it was investigated how an optical spectrometer can be used as a predictive diagnostic tool to detect ion source instabilities. Furthermore, the effect of parasitic oven heating by coupling of microwaves was investigated. Optical emission spectroscopy was performed by analyzing the light from the plasma and from the oven through the extraction aperture. The measurements enabled us to distinguish between resistive heating and microwave heating. The results of this investigation are presented.

中文翻译:

光谱学作为使用 ECRIS 产生金属离子束的诊断工具

在 GSI,CAPRICE ECRIS 用于向 UNILAC(通用线性加速器)加速器提供重离子束。为了满足金属离子束的需求,通常使用电阻加热炉。这种蒸发技术允许以高效率和低材料消耗从天然和富集的固体元素或化合物中产生离子束。通常需要提供来自稀有或极其稀有的同位素 48Ca 的高电荷态离子束,例如,用于研究超重元素。为了在整个预定的离子束时间内保持离子束稳定,离子源内的等离子体必须尽可能保持稳定。离子源参数和柱箱功率的调整会影响柱箱温度,进而影响蒸发速率。观察到微波功率与烘箱加热之间存在很强的关系,从而影响功率控制、等离子体稳定性和材料消耗。因此,研究了如何将光谱仪用作检测离子源不稳定性的预测诊断工具。此外,研究了微波耦合对寄生炉加热的影响。通过分析来自等离子体和来自烘箱的光穿过提取孔来进行光发射光谱。测量使我们能够区分电阻加热和微波加热。介绍了这项调查的结果。研究了如何将光谱仪用作检测离子源不稳定性的预测诊断工具。此外,研究了微波耦合对寄生炉加热的影响。通过分析来自等离子体和来自烘箱的光穿过提取孔来进行光发射光谱。测量使我们能够区分电阻加热和微波加热。介绍了这项调查的结果。研究了如何将光谱仪用作检测离子源不稳定性的预测诊断工具。此外,研究了微波耦合对寄生炉加热的影响。通过分析来自等离子体和来自烘箱的光穿过提取孔来进行光发射光谱。测量使我们能够区分电阻加热和微波加热。介绍了这项调查的结果。测量使我们能够区分电阻加热和微波加热。介绍了这项调查的结果。测量使我们能够区分电阻加热和微波加热。介绍了这项调查的结果。
更新日期:2019-12-01
down
wechat
bug