当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Solute release from an elastic capsule flowing through a microfluidic channel constriction
Applied Physics Reviews ( IF 17.054 ) Pub Date : 2019-12-20 , DOI: 10.1063/1.5129413
Zheng Yuan Luo; Bo Feng Bai

In recent years, microfluidic channels with narrow constrictions are extensively proposed as a new but excellent possibility for advanced delivery technologies based on either natural or artificial capsules. To better design and optimize these technologies, it is essential and helpful to fully understand the releasing behavior of the encapsulated solute from capsules under various flow conditions which, however, remains an unsolved fundamental problem due to its complexity. To facilitate studies in this area, we develop a numerical methodology for the simulation of solute release from an elastic capsule flowing through a microfluidic channel constriction, in which the tension-dependent permeability of the membrane is appropriately modeled. Using this model, we find that the release of the encapsulated solute during the capsule’s passage through the constriction is enhanced with the increase in the capillary number and constriction length or the decrease in the constriction width. On the other hand, a large variation in the channel height, which is generally larger than the capsule diameter, generates little effect on the released amount of the solute. We reveal that the effects of the capillary number and constriction geometry on the solute release are generally attributed to their influence on the capsule deformation. Our numerical results provide a reasonable explanation for previous experimental observations on the effects of constriction geometry and flow rate on the delivery efficiency of cell-squeezing delivery systems. Therefore, we believe these new insights and our numerical methodology could be useful for the design and optimization of microfluidic devices for capsule-squeezing delivery technologies.
更新日期:2019-12-31

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug