当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Revisiting Thomson equation for accurate modeling of pore scale thermodynamics of hydrocarbon solvents
Applied Physics Reviews ( IF 12.750 ) Pub Date : 2019-12-16 , DOI: 10.1063/1.5127754
Ilyas Al-Kindi, Tayfun Babadagli

As stated by the classical Thomson equation, the pore scale thermodynamics of a solvent is different from bulk conditions, being critically controlled by capillary characteristics. This equation shows that the boiling point temperatures decrease remarkably as the pore size becomes smaller, after a threshold value. This paper experimentally investigates this phenomenon for hydrocarbon solvents and compares the results with the values, obtained from the Thomson equation, to test its applicability in modeling heavy-oil recovery by solvents under nonisothermal conditions. As an initial step, the boiling point temperatures of two single-component solvents (heptane and decane) were measured by saturating Hele-Shaw type cells with variable apertures (ranging from 0.04 mm to 5 mm) and monitoring the boiling process. One experiment was run with a thickness of 12 mm to represent the bulk case. As the aperture (pore size) became smaller, the boiling point temperature decreased. For example, the measured boiling temperatures of heptane and decane were approximately 58 °C and 107 °C for the aperture values less than 0.15 mm, which were considerably lower than the “bulk” values (around 40%). In the next step, the same experiments were repeated using micromodels, representing porous media. Using the Thomson equation, the boiling points of the selected liquids were mathematically computed and compared with the experimental results from Hele-Shaw and micromodel experiments. Finally, modifications to the Thomson equation and alternative formulations were suggested.
更新日期:2019-12-31

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug