当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Dynamic and energy analysis of coalescence-induced self-propelled jumping of binary unequal-sized droplets
Applied Physics Reviews ( IF 12.750 ) Pub Date : 2019-12-23 , DOI: 10.1063/1.5139417
Yuhang Wang, Pingjian Ming

The coalescence-induced self-propelled droplet jumping on superhydrophobic surfaces has a large number of potential applications such as enhancement of condensation heat transfer, self-cleaning, and anti-icing, which becomes a current hotspot. At present, most of the research studies focus on the self-propelled jumping of two identical droplets; however, the jumping induced by unequal-sized droplets is much closer to actuality. In this paper, the coalescence-induced self-propelled jumping of binary unequal-sized droplets is simulated and all energy terms are studied. The normalized liquid bridge width induced by unequal-sized droplets is a function of the square root of the normalized time, and the maximum jumping velocity is a function of the radius ratio as well. The maximum jumping velocity descends with the decrease in the radius ratio and contact angle, and the critical radius ratio shows an upward trend with the decrease in the contact angle. Furthermore, all energy terms decline with the decrease in the radius ratio. The effective energy conversion rate of binary equal-sized jumping is very low, less than 3% in our results. This rate of binary unequal-sized jumping further reduces due to the existence of asymmetric flow. This work helps for a better understanding of the characteristics of coalescence-induced self-propelled droplet jumping.
更新日期:2019-12-31

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug