当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Control of flow and heat transfer over two inline square cylinders
Applied Physics Reviews ( IF 17.054 ) Pub Date : 2019-12-10 , DOI: 10.1063/1.5128751
A. Sohankar, M. Khodadadi, E. Rangraz, Md. Mahbub Alam

Laminar flow around and heat transfer from two inline square cylinders under an active flow control (uniform blowing and suction) are numerically investigated at Reynolds numbers of 70–150, a Prandtl number of 0.71, and a cylinder-gap spacing (G) ratio of G/d = 1–5, where d is the cylinder side. A finite-volume code based on a collocated grid arrangement is employed in the two-dimensional numerical simulations. Uniform blowing and suction are applied to the upstream cylinder only (referred to as UFC) or applied to both cylinders (referred to as OFC). The purpose of using these two flow controls is to reduce time-mean and fluctuating forces and to suppress vortex shedding. The noncontrol case is referred to as the reference case where vortex shedding occurs from both cylinders for G/d ≥ 3 and from the downstream cylinder only for G/d < 3. For UFC, vortex shedding from the upstream cylinder is suppressed for G/d = 1–5 examined. A drag reduction of more than 50% occurs for the upstream cylinder with G/d = 1–5, while the downstream cylinder has such a high drag reduction for G/d ≥ 3 only. In the case of OFC, vortex shedding from either cylinder is suppressed while the time-mean and fluctuating forces reduce for the entire G/d range. The maximum reduction in the total drag force (sum of both cylinders) is about 70%. The blowing hinders heat transfer from the cylinders while the suction enhances it.
更新日期:2019-12-31

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug