当前位置: X-MOL 学术Food Hydrocoll. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the air-water interfacial behavior of suspensions of wheat gliadin nanoparticles
Food Hydrocolloids ( IF 10.7 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.foodhyd.2019.105638
Arno G.B. Wouters , Iris J. Joye , Jan A. Delcour

Abstract The low solubility of many plant proteins (such as those of cereals) is a main obstacle preventing their use for stabilizing food foams and emulsions. Protein based nanoparticle suspensions hold promise for stabilizing such systems. Here, we shed light on how wheat gliadin based nanoparticles (WGNPs) behave at air-water interfaces, which at present remains largely unknown. At pH 4.0 and pH 6.0, WGNPs display very poor and excellent foam stability and result in interfacial films with low and high viscoelasticity, respectively. Fourier Transform Infra-Red and fluorescence spectroscopy revealed substantial differences neither in structural nor in surface properties of WGNPs, nor in WGNP morphology at varying pH values ranging between 4.0 and 6.0, implying that the differences in interfacial behavior originate at the interface during or after adsorption of WGNPs. Cryo scanning electron microscopy imaging of foams stabilized by WGNPs showed that at pH 4.0 and pH 6.0 NP-like structures and a more coherent film are present at the interface, respectively. This is consistent with the higher viscoelasticity of adsorbed interfacial films at pH 6.0 than that at pH 4.0. Foam fractionation revealed that proteins in foams produced at pH 6.0 contain a substantial amount of intermolecular disulfide bonds. Thus, the excellent foam stability of WGNPs at pH 6.0 may at least to some extent be ascribed to formation of a covalently cross-linked protein network at the air-water interface.

中文翻译:

了解小麦醇溶蛋白纳米颗粒悬浮液的气水界面行为

摘要 许多植物蛋白(如谷物)的低溶解度是阻碍它们用于稳定食品泡沫和乳液的主要障碍。基于蛋白质的纳米颗粒悬浮液有望稳定此类系统。在这里,我们阐明了基于小麦醇溶蛋白的纳米粒子 (WGNPs) 在空气 - 水界面上的行为,目前这在很大程度上仍是未知的。在 pH 4.0 和 pH 6.0 下,WGNP 表现出非常差和优异的泡沫稳定性,并分别导致界面膜具有低粘弹性和高粘弹性。傅里叶变换红外光谱和荧光光谱揭示了 WGNPs 的结构和表面特性以及 WGNP 形态在 4.0 和 6.0 之间变化的 pH 值方面的显着差异,这意味着界面行为的差异起源于 WGNP 吸附期间或之后的界面。WGNPs 稳定的泡沫的低温扫描电子显微镜成像表明,在 pH 4.0 和 pH 6.0 时,界面处分别存在类似 NP 的结构和更连贯的薄膜。这与吸附的界面膜在 pH 6.0 比在 pH 4.0 时具有更高的粘弹性一致。泡沫分级显示,在 pH 6.0 下产生的泡沫中的蛋白质含有大量分子间二硫键。因此,WGNPs 在 pH 6.0 下的优异泡沫稳定性至少在一定程度上可以归因于在空气 - 水界面处形成共价交联的蛋白质网络。0 类 NP 结构和更连贯的薄膜分别存在于界面处。这与吸附的界面膜在 pH 6.0 比在 pH 4.0 时具有更高的粘弹性一致。泡沫分级显示,在 pH 6.0 下产生的泡沫中的蛋白质含有大量分子间二硫键。因此,WGNPs 在 pH 6.0 下的优异泡沫稳定性至少在一定程度上可以归因于在空气 - 水界面处形成共价交联的蛋白质网络。0 类 NP 结构和更连贯的薄膜分别存在于界面处。这与吸附的界面膜在 pH 6.0 比在 pH 4.0 时具有更高的粘弹性一致。泡沫分级显示,在 pH 6.0 下产生的泡沫中的蛋白质含有大量分子间二硫键。因此,WGNPs 在 pH 6.0 下的优异泡沫稳定性至少在一定程度上可以归因于在空气 - 水界面处形成共价交联的蛋白质网络。
更新日期:2020-05-01
down
wechat
bug