当前位置: X-MOL 学术Protein Eng. Des. Sel. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attempts to develop an enzyme converting DHIV to KIV.
Protein Engineering, Design and Selection ( IF 2.4 ) Pub Date : 2019-12-23 , DOI: 10.1093/protein/gzz042
Kenji Oki 1, 2 , Frederick S Lee 3 , Stephen L Mayo 1, 4
Affiliation  

Dihydroxy-acid dehydratase (DHAD) catalyzes the dehydration of R-2,3-dihydroxyisovalerate (DHIV) to 2-ketoisovalerate (KIV) using an Fe-S cluster as a cofactor, which is sensitive to oxidation and expensive to synthesize. In contrast, sugar acid dehydratases catalyze the same chemical reactions using a magnesium ion. Here, we attempted to substitute the high-cost DHAD with a cost-efficient engineered sugar acid dehydratase using computational protein design (CPD). First, we tried without success to modify the binding pocket of a sugar acid dehydratase to accommodate the smaller, more hydrophobic DHIV. Then, we used a chemically activated substrate analog to react with sugar acid dehydratases or other enolase superfamily enzymes. Mandelate racemase from Pseudomonas putida (PpManR) and the putative sugar acid dehydratase from Salmonella typhimurium (StPutD) showed beta-elimination activity towards chlorolactate (CLD). CPD combined with medium-throughput selection improved the PpManR kcat/KM for CLD by four-fold. However, these enzyme variants did not show dehydration activity towards DHIV. Lastly, assuming phosphorylation could also be a good activation mechanism, we found that mevalonate-3-kinase (M3K) from Picrophilus torridus (PtM3K) exhibited adenosine triphosphate (ATP) hydrolysis activity when mixed with DHIV, indicating phosphorylation activity towards DHIV. Engineering PpManR or StPutD to accept 3-phospho-DHIV as a substrate was performed, but no variants with the desired activity were obtained.

中文翻译:

尝试开发将DHIV转化为KIV的酶。

二羟基酸脱水酶(DHAD)使用Fe-S簇作为辅因子催化R-2,3-二羟基异戊酸酯(DHIV)脱水成2-酮异戊酸酯(KIV),它对氧化敏感并且合成昂贵。相反,糖酸脱水酶使用镁离子催化相同的化学反应。在这里,我们尝试使用计算蛋白设计(CPD)将高成本的DHAD替换为具有成本效益的工程糖酸脱水酶。首先,我们尝试不成功地修改糖酸脱水酶的结合口袋,以适应更小,更疏水的DHIV。然后,我们使用化学活化的底物类似物与糖酸脱水酶或其他烯醇化酶超家族酶反应。恶臭假单胞菌的扁桃酸酯消旋酶(PpManR)和鼠伤寒沙门氏菌的推定糖酸脱水酶(StPutD)对氯乳酸(CLD)表现出β消除活性。CPD与中通量选择相结合将CLD的PpManR kcat / KM提高了四倍。然而,这些酶变体没有显示出对DHIV的脱水活性。最后,假设磷酸化也可能是一个良好的激活机制,我们发现与DHIV混合的来自Picrophilus torridus(PtM3K)的甲羟戊酸3-激酶(M3K)表现出三磷酸腺苷(ATP)水解活性,表明对DHIV的磷酸化活性。对PpManR或StPutD进行了工程改造,以接受3-磷酸-DHIV作为底物,但未获得具有所需活性的变体。CPD与中通量选择相结合将CLD的PpManR kcat / KM提高了四倍。但是,这些酶变体没有表现出对DHIV的脱水活性。最后,假设磷酸化也可能是一个良好的激活机制,我们发现当与DHIV混合时,来自Torrusus(PtM3K)的甲羟戊酸3-激酶(M3K)表现出三磷酸腺苷(ATP)水解活性,表明对DHIV的磷酸化活性。对PpManR或StPutD进行了工程改造,以接受3-磷酸-DHIV作为底物,但未获得具有所需活性的变体。CPD与中通量选择相结合将CLD的PpManR kcat / KM提高了四倍。然而,这些酶变体没有显示出对DHIV的脱水活性。最后,假设磷酸化也可能是一个良好的激活机制,我们发现与DHIV混合的来自Picrophilus torridus(PtM3K)的甲羟戊酸3-激酶(M3K)表现出三磷酸腺苷(ATP)水解活性,表明对DHIV的磷酸化活性。对PpManR或StPutD进行了工程改造,以接受3-磷酸-DHIV作为底物,但未获得具有所需活性的变体。我们发现,当与DHIV混合时,来自Picrophilus torridus(PtM3K)的甲羟戊酸-3-激酶(M3K)表现出三磷酸腺苷(ATP)水解活性,表明对DHIV的磷酸化活性。对PpManR或StPutD进行了工程改造,以接受3-磷酸-DHIV作为底物,但未获得具有所需活性的变体。我们发现,当与DHIV混合时,来自Picrophilus torridus(PtM3K)的甲羟戊酸-3-激酶(M3K)表现出三磷酸腺苷(ATP)水解活性,表明对DHIV的磷酸化活性。对PpManR或StPutD进行了工程改造,以接受3-磷酸-DHIV作为底物,但未获得具有所需活性的变体。
更新日期:2019-12-31
down
wechat
bug