当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sonoelectrochemical hydrogenation of safrole: A reactor design, statistical analysis and computational fluid dynamic approach.
Ultrasonics Sonochemistry ( IF 8.4 ) Pub Date : 2019-12-30 , DOI: 10.1016/j.ultsonch.2019.104949
Josinete Angela da Paz 1 , Frederico Duarte de Menezes 2 , Thiago Matheus Guimarães Selva 2 , Marcelo Navarro 1 , José Ângelo Peixoto da Costa 2 , Ronaldo Dionísio da Silva 2 , Alvaro Antonio Ochoa Villa 2 , Márcio Vilar 2
Affiliation  

In this work, ultrasound-assisted electrocatalytic hydrogenation (US-ECHSA) of safrole was carried out in water medium, using sacrificial anode of nickel. The ultrasonic irradiation was carried out at frequency of 20 kHz ± 500 Hz with a titanium cylindrical horn (MS 73 microtip; Ti-6AI-4V alloy; 3.0 mm diameter). The optimal conditions were analyzed by statistical experimental design (fractional factorial). The influence of the sonoelectrochemical reactor design was also investigated by using computational fluid dynamics as simulation tool. Among the five parameters studied: catalyst type, use of β-cyclodextrin as inverse phase transfer catalyst, sonoelectrochemical reactor design, ultrasound mode and the temperature of the solution, only the last three were significant. The hydrogenation product, dihydrosafrole, reached 94% yield, depending on the experimental conditions applied. Data of computational fluid dynamics showed that a wing shape tube added to the sonoelectrochemical reactor can work as a cooling apparatus, during the electrochemical process. The reactional solution temperature diminishes 14 °C when compared to the four-way-type reactor. Cooper cathode, absence of β-cyclodextrin, four-way-type reactor, ultrasound continuous mode (14 W) and absence of temperature control were the most effective reaction parameters for the safrole hydrogenation using US-ECHSA method. The proposed approach represents an important contribution for understanding the hydrodynamic behavior of sonoelectrochemical reactors designs and, consequently, for the reducing of the experimental costs inherent to the sonoelectrochemical process.

中文翻译:

紫杉醇的声电化学加氢:反应器设计,统计分析和计算流体动力学方法。

在这项工作中,使用镍的牺牲阳极在水介质中进行了黄樟素的超声辅助电催化加氢(US-ECHSA)。用钛制圆筒形号角(MS 73 microtip; Ti-6Al-4V合金;直径3.0 mm)以20 kHz±500 Hz的频率进行超声辐照。通过统计实验设计(分数阶乘)分析了最佳条件。还使用计算流体动力学作为仿真工具研究了声电化学反应器设计的影响。在所研究的五个参数中:催化剂类型,使用β-环糊精作为反相转移催化剂,声电化学反应器设计,超声模式和溶液温度,只有最后三个是有意义的。氢化产物二氢黄樟脑的收率达到94%,取决于所应用的实验条件。计算流体动力学的数据表明,在电化学过程中,添加到声电化学反应器中的翼形管可以用作冷却设备。与四通型反应器相比,反应溶液温度降低了14°C。库珀阴极,缺少β-环糊精,四通反应器,超声连续模式(14 W)和缺乏温度控制是使用US-ECHSA方法进行黄樟脑加氢最有效的反应参数。所提出的方法代表了对理解声电化学反应器设计的流体力学行为,从而降低声电化学过程固有的实验成本的重要贡献。计算流体动力学的数据表明,在电化学过程中,添加到声电化学反应器中的翼形管可以用作冷却设备。与四通型反应器相比,反应溶液温度降低了14°C。库珀阴极,缺少β-环糊精,四通反应器,超声连续模式(14 W)和缺乏温度控制是使用US-ECHSA方法进行黄樟脑加氢最有效的反应参数。所提出的方法代表了对理解声电化学反应器设计的流体力学行为,从而降低声电化学过程固有的实验成本的重要贡献。计算流体动力学的数据表明,在电化学过程中,添加到声电化学反应器中的翼形管可以用作冷却设备。与四通型反应器相比,反应溶液温度降低了14°C。库珀阴极,缺少β-环糊精,四通反应器,超声连续模式(14 W)和缺乏温度控制是使用US-ECHSA方法进行黄樟脑加氢最有效的反应参数。所提出的方法代表了对理解声电化学反应器设计的流体力学行为,从而降低声电化学过程固有的实验成本的重要贡献。
更新日期:2019-12-30
down
wechat
bug