当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrooxidation, Size Stability, and Electrocatalytic Activity of 0.9 nm Diameter Gold Nanoclusters Coated with a Weak Stabilizer
ChemElectroChem ( IF 4 ) Pub Date : 2019-12-30 , DOI: 10.1002/celc.201901700
Dhruba K. Pattadar 1 , Badri P. Mainali 1 , Jacek B. Jasinski 2 , Francis P. Zamborini 1
Affiliation  

Here we describe the electrooxidation and size stability of 0.9 nm average diameter triphenylphosphine monosulfonate (TPPS)‐stabilized Au nanoclusters (NCs) as compared to 1.6 nm tetrakis(hydroxymethyl)phosphonium chloride (THPC)‐stabilized Au NCs and 4.1 nm citrate (Cit)‐stabilized Au nanoparticles (NPs). The potential for oxidative dissolution in KBr follows the order of TPPS Au0.9nm NCs (0.219 V) < THPC Au1.6nm NCs (0.452 V) < Cit Au4.1nm­ NPs (0.723 V) < bulk Au (~0.932 V) while that for surface Au oxide reduction follows the order of TPPS Au0.9nm NCs (0.607 V) < THPC Au1.6nm NCs (0.679 V) < Au4.1nm NPs (0.808 V) vs. Ag/AgCl. TPPS Au0.9nm NCs and Cit Au4.1nm NPs convert to larger aggregates by fusing together in acidic pH, while THPC Au1.6nm NCs are highly stable from pH 2.4‐11. Exposure of TPPS Au0.9nm NCs to ozone causes considerable size increase within 1‐2 minutes, similar to previous results on THPC Au1.6nm. THPC Au1.6nm NCs are stable against oxidation after exchange of THPC with 1‐butanethiol while TPPS Au0.9nm NCs dissolve into solution during exchange. TPPS Au0.9nm NCs are inactive for the hydrogen evolution reaction and CO2 reduction reaction, whereas THPC Au1.6nm NCs exhibit excellent activity. The differences in oxidation potential, size instability, and electrocatalytic activity are due to the Au size as opposed to the different ligands, while the pH‐induced aggregation depends on the acidic or basic nature of the stabilizing ligand.

中文翻译:

涂有弱稳定剂的0.9 nm直径金纳米团簇的电氧化,尺寸稳定性和电催化活性

这里我们描述了平均直径为0.9 nm的三苯基膦单磺酸盐(TPPS)稳定的Au纳米簇(NCs)与1.6 nm的四(羟甲基)phosph氯化物(THPC)稳定的Au NCs和4.1 nm柠檬酸盐(Cit)的电氧化和尺寸稳定性稳定的金纳米颗粒(NPs)。KBr中氧化溶解的电位遵循TPPS Au0.9nm NCs(0.219 V)<THPC Au1.6nm NCs(0.452 V)<Cit Au4.1nm NPs(0.723 V)<体金(〜0.932 V)的顺序表面金氧化物的还原遵循相对于Ag / AgCl的TPPS Au0.9nm NCs(0.607 V)<THPC Au1.6nm NCs(0.679 V)<Au4.1nm NPs(0.808 V)的顺序。TPPS Au0.9nm NCs和Cit Au4.1nm NCs通过在酸性pH值下融合而转变为较大的聚集体,而THPC Au1.6nm NCs在pH 2.4-11时高度稳定。TPPS Au0的曝光。9nm的NC臭氧在1-2分钟内会导致尺寸显着增加,这与之前在THPC Au1.6nm上的结果相似。THPC Au1.6nm NCs在与1-丁硫醇交换THPC后具有稳定的抗氧化性,而TPPS Au0.9nm NCs在交换过程中溶解在溶液中。TPPS Au0.9nm NCs对氢释放反应和CO2还原反应无效,而THPC Au1.6nm NCs具有优异的活性。氧化电位,尺寸不稳定性和电催化活性的差异是由于金的大小而不是不同的配体引起的,而pH诱导的聚集取决于稳定配体的酸性或碱性。交换过程中9nm NC溶解在溶液中。TPPS Au0.9nm NCs对氢释放反应和CO2还原反应无效,而THPC Au1.6nm NCs具有优异的活性。氧化电位,尺寸不稳定性和电催化活性的差异是由于金的大小而不是不同的配体引起的,而pH诱导的聚集取决于稳定配体的酸性或碱性。交换过程中9nm NC溶解在溶液中。TPPS Au0.9nm NCs对氢释放反应和CO2还原反应无效,而THPC Au1.6nm NCs具有优异的活性。氧化电位,尺寸不稳定性和电催化活性的差异是由于金的大小而不是不同的配体引起的,而pH诱导的聚集取决于稳定配体的酸性或碱性。
更新日期:2019-12-30
down
wechat
bug