当前位置: X-MOL 学术Eur. J. Inorg. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly Efficient and Uncommon Photoluminescence Behavior Combined with Multiple Dielectric Response in Manganese(II) Based Hybrid Phase Transition Compounds
European Journal of Inorganic Chemistry ( IF 2.3 ) Pub Date : 2020-01-21 , DOI: 10.1002/ejic.201901263
Ya-Xing Wu 1 , Chang-Feng Wang 2 , Hui-Hui Li 1 , Fan Jiang 1 , Chao Shi 2 , Heng-Yun Ye 2 , Yi Zhang 1, 2
Affiliation  

A series of multifunctional photoluminescent materials, [pyrrolidinium]2MnBr4 (1), [N‐methylpyrrolidinium]2MnBr4 (2), and [N‐methylpyrrolidinium]MnBr3 (3), were obtained by means of regulating diverse organic cations and different coordination modes of inorganic metal ions. Interestingly, compounds 1, 2, and 3 exhibit different dielectric switching and relaxation behavior in the process of structural transformations. Furthermore, compounds 1, 2, and 3 possess intriguing photoluminescence properties. When subjected to UV light, tetrahedrally coordinated compound 1 shows extraordinarily strong green light emission with a high quantum yield of 51.41 %. By changing the organic cation, compound 2 exhibits an unusual orange emission under ultraviolet excitation, which is different from that of conventional tetrahedrally coordinated manganese‐based compounds. By the regulation of coordination modes of inorganic metal ions, octahedrally coordinated compound 3 emits bright red light with a high quantum yield of 36.76 %. This finding may open a new approach toward designing multifunctional photoluminescent materials.

中文翻译:

高效(不常见)的光致发光行为与多重介电响应相结合的锰(II)基混合相变化合物

通过调节各种有机阳离子,获得了一系列多功能光致发光材料,[吡咯烷鎓] 2 MnBr 41),[ N-甲基吡咯烷鎓] 2 MnBr 42)和[ N-甲基吡咯烷鎓] MnBr 33)。以及无机金属离子的不同配位方式。有趣的是,化合物12,和3中的结构转换的过程中表现出不同的介电开关和松弛行为。此外,化合物12,和3具有引人入胜的光致发光特性。当受到UV光照射时,四面体配位化合物1显示出异常强的绿光发射,具有51.41%的高量子产率。通过改变有机阳离子,化合物2在紫外线激发下会显示出异常的橙色发射,这与常规的四面体配位的锰基化合物不同。通过调节无机金属离子的配位方式,八面体配位化合物3发出明亮的红光,量子产率高达36.76%。这一发现可能为设计多功能光致发光材料开辟一种新途径。
更新日期:2020-01-22
down
wechat
bug