当前位置: X-MOL 学术Biosens. Bioelectron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Construction of flexible enzymatic electrode based on gradient hollow fiber membrane and multi-wall carbon tubes meshes.
Biosensors and Bioelectronics ( IF 12.6 ) Pub Date : 2019-12-28 , DOI: 10.1016/j.bios.2019.112001
Huating Huang 1 , Tong Li 1 , Min Jiang 2 , Chenjie Wei 1 , Shuyan Ma 1 , Dajing Chen 2 , Weijun Tong 1 , Xiaojun Huang 1
Affiliation  

In this study, we developed a convenient way to construct a flexible enzymatic electrode with excellent stability and electrochemical performance for implanted glucose monitoring. The electrode was constructed through the co-immobilization of the glucose oxidase micro-particles (GOD MPs) and multi-wall carbon nanotubes (CNT) on the inner surface of a gradient-structured hollow fiber membrane (GHM), where CNT improved the electron transport efficiency and GHM controlled the transfer of substances and interferences. GOD MPs showed higher stability under various operation conditions than the free enzymes due to the MnCO3 template method, which enabled the biosensor to remain relative sensitivity at >86% over 9 days. The GOD MPs biosensor also showed high selectivity, reproducibility, and linear sensing range from 0 mM to 24 mM (R2 = 0.9993) with a current sensitivity of 25 nA/mM. The combination of porous-structured membrane and the flexible CNT meshes ensures the electrical connections and sensing accuracy of the biosensor under the deformation status. In-vivo experiments showed reliable current responses to variations in blood glucose concentrations that were consistent with tail blood test results. This co-immobilization of enzyme micro-particles in the 3D porous structure method developed a bio-composite platform technology towards the applications in flexible sensing and implantable medical devices.

中文翻译:

基于梯度中空纤维膜和多壁碳管网的柔性酶电极的构建。

在这项研究中,我们开发了一种方便的方法来构建具有优异稳定性和电化学性能的柔性酶电极,用于监测葡萄糖。通过将葡萄糖氧化酶微粒(GOD MPs)和多壁碳纳米管(CNT)共同固定在梯度结构中空纤维膜(GHM)的内表面上来构造电极,其中CNT改善了电子运输效率和GHM控制了物质的转移和干扰。由于采用MnCO3模板法,GOD MPs在各种操作条件下均比游离酶具有更高的稳定性,这使生物传感器在9天内可保持> 86%的相对灵敏度。GOD MPs生物传感器还显示出高选择性,可重复性以及0 mM至24 mM(R2 = 0)的线性传感范围。9993),电流灵敏度为25 nA / mM。多孔结构膜和柔性CNT网格的结合确保了生物传感器在变形状态下的电连接和传感精度。体内实验显示出对血糖浓度变化的可靠电流响应,这与尾部血液测试结果一致。这种在3D多孔结构方法中酶微粒的共固定化开发了一种生物复合平台技术,用于柔性传感和可植入医疗设备中的应用。体内实验显示了对血糖浓度变化的可靠电流响应,该响应与尾部血液测试结果一致。这种在3D多孔结构方法中酶微粒的共固定化开发了一种生物复合平台技术,用于柔性传感和可植入医疗设备中的应用。体内实验显示出对血糖浓度变化的可靠电流响应,这与尾部血液测试结果一致。这种在3D多孔结构方法中酶微粒的共固定化开发了一种生物复合平台技术,用于柔性传感和可植入医疗设备中的应用。
更新日期:2019-12-29
down
wechat
bug