当前位置: X-MOL 学术Opt. Laser Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of energy density on laser powder bed fusion built single tracks and thin wall structures with 100 µm preplaced powder layer thickness
Optics & Laser Technology ( IF 5 ) Pub Date : 2019-12-26 , DOI: 10.1016/j.optlastec.2019.106016
S.K. Nayak , S.K. Mishra , C.P. Paul , A.N. Jinoop , K.S. Bindra

Laser Powder Bed Fusion (LPBF) is one of the advanced manufacturing technologies used for fabricating near net shaped components directly from CAD model data by selectively melting pre-placed layer of powder in layer by layer fashion. LPBF process is widely researched with layer thickness up to 60 µm and is now commercially deployed for many metallic materials. However, very limited literature is available in public domain for LPBF with layer thickness >60 µm as the process in this window has many challenges in geometry control and reproducibility due to inherent process instability. However, higher layer thickness with larger beam diameter can bring better productivity and shorter built time with limited compromise on minimum feature size. The present work focuses on a systematic parametric study on single track and thin wall fabrication using LPBF at layer thickness of 100 µm by varying laser power (150–450 W) and scan speed (0.02–0.08 m/s) using SS 316L powder. For the range of parameters under investigation, process window yielding stable tracks (regular and uniform) is obtained for energy density between 87.5 and 140 J/mm3. An analytical model for predicting the width of the track and a regression model for the depth of re-melted zone in the substrate subsurface and track area during single track fabrication is developed in terms of energy density. The average difference in predicted and experimental values for width and area of the track are 3.18% and 7.61%, respectively within the process window. Width of thin walls built at the same parameters is measured and the variation between width of thin wall and track is estimated in terms of energy density. The width of thin walls fabricated are observed to be larger than that of single track built at the same combinations of process parameters primarily due to preheating effect. For the range of parameters under investigation, the highest values of width of thin wall and its difference from corresponding width of track is observed at 112.5 J/mm3 in the process window. The study paves a way in understanding the effect of higher layer thickness on the geometry of LPBF built components.



中文翻译:

能量密度对激光粉末床熔融预制的单层粉末层厚度为100 µm的单轨道和薄壁结构的影响

激光粉末床熔合(LPBF)是一种先进的制造技术,用于通过逐层选择性地熔化预先放置的粉末层,直接从CAD模型数据中制造出接近最终形状的零件。LPBF工艺已被广泛研究,其层厚度高达60 µm,目前已在商业上用于许多金属材料。但是,在公共领域中对于厚度大于60 µm的LPBF的文献非常有限,因为该窗口中的过程由于固有的过程不稳定性而在几何形状控制和可重复性方面面临许多挑战。但是,更高的层厚度和更大的光束直径可以带来更好的生产率和更短的构建时间,并且对最小特征尺寸的折衷程度有限。本工作着重于系统性的参数化研究,该研究使用LPBF通过改变SS 316L粉末的激光功率(150–450 W)和扫描速度(0.02–0.08 m / s)在100 µm的层厚下使用LPBF进行单轨道和薄壁制造。对于所研究的参数范围,对于87.5至140 J / mm的能量密度,可获得稳定的轨迹(规则和均匀)的工艺窗口3。根据能量密度,开发了用于预测轨道宽度的分析模型和用于在单轨道制造过程中基板次表面和轨道区域中的重熔区深度的回归模型。在处理窗口内,轨道的宽度和面积的预测值和实验值的平均差异分别为3.18%和7.61%。测量以相同参数建造的薄壁的宽度,并根据能量密度估算薄壁和轨道之间的宽度变化。观察到制造的薄壁的宽度要大于在相同工艺参数组合下建造的单轨宽度,这主要是由于预热效应。对于正在研究的参数范围,3在过程窗口中。该研究为了解更高的层厚对LPBF内置组件的几何形状的影响铺平了道路。

更新日期:2019-12-26
down
wechat
bug