当前位置: X-MOL 学术Sol. Energy › 论文详情
A copula-based Bayesian method for probabilistic solar power forecasting
Solar Energy ( IF 4.674 ) Pub Date : 2019-12-20 , DOI: 10.1016/j.solener.2019.11.079
Hossein Panamtash; Qun Zhou; Tao Hong; Zhihua Qu; Kristopher O. Davis

With increased penetration of solar energy sources, solar power forecasting has become more crucial and challenging. This paper proposes a copula-based Bayesian approach to improve probabilistic solar power forecasting by capturing the joint distribution between solar power and ambient temperature. A prior forecast distribution is first obtained using different underlying point forecasting models. Parametric and empirical copulas of solar power and temperature are then developed to update the prior distribution to the posterior forecast distribution. A public solar power database is used to demonstrate effectiveness of the proposed method. Numerical results show that the copula-based Bayesian method outperforms the forecasting method that directly uses temperature as a feature. The Bayesian method is also compared with persistent models and show improved performance. This article includes supplementary material (data and code) for reproducibility.
更新日期:2019-12-27

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug