当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Calculated Infrared and Raman signatures of Ag+, Cd2+, Pb2+, Hg2+, Ca2+, Mg2+, and K+ sodalites
Microporous and Mesoporous Materials ( IF 5.2 ) Pub Date : 2019-12-27 , DOI: 10.1016/j.micromeso.2019.109983
Amir Mehdi Mofrad , Parker S. Schellenberg , Caio Peixoto , Heather K. Hunt , Karl D. Hammond

We explore the potential of vibrational spectroscopy, an inexpensive analysis technique, for the purpose of detecting of heavy metals in water using sodalite. Computations via density functional theory of the infrared and Raman spectra of anion-free sodalites that have been exchanged with lead (II), cadmium (II), and mercury (II) ions predict a peak in the 850–880 cm−1 range in both the infrared and Raman spectra that is characteristic of anion-free sodalites that have been exchanged with these three heavy metal cations. This peak is distinguishable from the infrared spectra of anion-free sodalites that have been exchanged with potassium, magnesium, and calcium ions, which are naturally present in drinking water. Unfortunately, no peak in this range exists for chloro-, bromo-, or hydroxy-sodalites, and peaks in this range may be masked by the presence of magnesium hydroxysodalites, which would be expected to form in water testing applications. In addition, the signal-to-noise ratio is likely too low to provide a useful test for heavy metal contamination at the levels required for municipal water testing.



中文翻译:

Ag +,Cd 2 +,Pb 2 +,Hg 2 +,Ca 2 +,Mg 2+和K +方钠石的红外和拉曼光谱计算值

我们探索振动光谱的潜力,这是一种廉价的分析技术,目的是使用方钠石检测水中的重金属。通过密度泛函理论对已经与铅(II),镉(II)和汞(II)离子交换的无阴离子方钠石的红外和拉曼光谱进行密度计算,可以预测850-880 cm -1的峰值红外光谱和拉曼光谱均显示在一个范围内,这是已与这三种重金属阳离子交换的无阴离子方钠石的特征。此峰与已与饮用水中天然存在的钾,镁和钙离子交换的无阴离子方钠石的红外光谱区分开。不幸的是,对于氯代,溴代或羟基代苏打石,在该范围内不存在峰,并且在该范围内的峰可能被羟基苏打石镁的存在所掩盖,这有望在水测试应用中形成。此外,信噪比可能太低,无法为市政水质测试所需的水平提供有用的重金属污染测试。

更新日期:2019-12-27
down
wechat
bug