当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regulating the structural dimensionality and dynamic properties of a porous dysprosium coordination polymer through solvent molecules
Inorganic Chemistry Frontiers ( IF 7 ) Pub Date : 2019/12/26 , DOI: 10.1039/c9qi01440c
Fang Ma 1, 2, 3, 4 , Rong Sun 5, 6, 7, 8, 9 , Ai-Huan Sun 1, 2, 3, 4 , Jin Xiong 5, 6, 7, 8, 9 , Hao-Ling Sun 1, 2, 3, 4 , Song Gao 5, 6, 7, 8, 9
Affiliation  

A novel three-dimensional porous dysprosium coordination polymer {[Dy2L2(bpdo)2(H2O)(CH3OH)]·2ClO4·2CH3CN}n (1) has been successfully assembled by combining a superparamagnetic building block of [DyLCl(CH3OH)]2 with the organic ligand 4,4′-bipyridine-N,N′-dioxide (bpdo) (H2L = N′-(2-hydroxybenzylidene)picolinohydrazide). Interestingly, upon the release and/or absorption of different solvent molecules, 1 undergoes reversible single-crystal-to-single-crystal (SCSC) transitions, resulting in the formation of another layer compound of {[DyL(bpdo)(H2O)]·ClO4·2H2O}n (2). This structural transformation involves the breaking and reforming of coordination bonds and leads to significant changes in the relaxation behaviour expected for these coordination polymers, as evidenced by the increase in effective energy barriers from 133 K (1) to 264 K (2) and the slowdown of quantum tunnelling at low temperature. The theoretical calculations indicate that the distinct relaxation behaviours arise mainly from the variation in the coordination geometry around the dysprosium ions. Our work shows that guest molecules can reversibly induce remarkable structural changes in a porous dysprosium coordination polymer and significantly affect its dynamic properties.

中文翻译:

通过溶剂分子调节多孔s配位聚合物的结构尺寸和动力学性质

通过结合超顺磁性成功地组装了新型三维多孔配位聚合物{[Dy 2 L 2(bpdo)2(H 2 O)(CH 3 OH)]·2ClO 4 ·2CH 3 CN} n1) [DyLCl(CH 3 OH)] 2的结构单元,带有有机配体4,4'-联吡啶-NN'-二氧化物(bpdo)(H 2 L = N '-(2-羟基亚苄基)吡啶并酰肼)。有趣的是,在释放和/或吸收不同溶剂分子后,1经历可逆的单晶至单晶(SCSC)跃迁,从而形成{[DyL(bpdo)(H 2 O)]·ClO 4 ·2H 2 O} n2)的另一层化合物。这种结构转变涉及配位键的断裂和重整,并导致这些配位聚合物预期的弛豫行为发生显着变化,这由有效能垒从133 K(1)增加到264 K(2)证明。)以及低温下量子隧穿的减慢。理论计算表明,明显的弛豫行为主要是由around离子周围配位几何结构的变化引起的。我们的工作表明,客体分子可以可逆地诱导多孔配位聚合物中的显着结构变化,并显着影响其动态性能。
更新日期:2020-02-18
down
wechat
bug