当前位置: X-MOL 学术Nano Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non-oxide semiconductors for artificial photosynthesis: Progress on photoelectrochemical water splitting and carbon dioxide reduction
Nano Today ( IF 17.4 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.nantod.2019.100830
Jianyong Feng , Huiting Huang , Shicheng Yan , Wenjun Luo , Tao Yu , Zhaosheng Li , Zhigang Zou

Abstract Among various artificial photosynthesis routes, photoelectrochemical (PEC) hydrogen (H2) production via water splitting and hydrocarbon generation via carbon dioxide (CO2) reduction are particularly intriguing for achieving a sustainable society. A simpler and potentially economical device design for PEC cells, as compared with those containing photovoltaic cells, is using semiconductor–liquid junction (SCLJ) based photoelectrodes to assemble a photoanode–photocathode tandem cell. The SCLJs form immediately upon semiconductor films immersing into electrolytes, which are then used to separate photogenerated electron–hole pairs and drive corresponding redox chemistry. To engineering these SCLJ-based photoanode–photocathode tandem PEC devices to achieving considerable solar energy conversion efficiencies, the key step is to identify suitable semiconductor materials, the core component in most solar energy conversion systems. In addition, applying effective strategies to modify these semiconductors are needed, as they cannot simultaneously meet all the requirements of efficient light absorption, charge separation and extraction, surface reaction, and operational stability at the same time. This article provides a review on promising non-oxide semiconductors for PEC conversion of solar energy into chemical fuels. The efforts to increase charge transport and separation, to accelerate the charge transfer kinetics across various interfaces, and to engender long-term durability of these non-oxide photoelectrodes are emphasized. As screening, evaluation and optimization have led to substantial improvement in both PEC performance and operational durability, non-oxide semiconductors will provide new opportunities, in addition to classical metal oxide semiconductors, to realize efficient and cost-effective PEC solar fuel production.

中文翻译:

用于人工光合作用的非氧化物半导体:光电化学分解水和二氧化碳还原研究进展

摘要 在各种人工光合作用途径中,通过水分解产生的光电化学 (PEC) 氢气 (H2) 和通过二氧化碳 (CO2) 还原产生碳氢化合物对于实现可持续社会特别有吸引力。与包含光伏电池的那些相比,PEC 电池的一种更简单且潜在经济的设备设计是使用基于半导体 - 液体结 (SCLJ) 的光电极来组装光电阳极 - 光电串联电池。SCLJs 在半导体薄膜浸入电解质后立即形成,然后用于分离光生电子 - 空穴对并驱动相应的氧化还原化学。为了设计这些基于 SCLJ 的光阳极-光阴极串联 PEC 器件以实现可观的太阳能转换效率,关键步骤是确定合适的半导体材料,这是大多数太阳能转换系统的核心部件。此外,需要应用有效的策略来修饰这些半导体,因为它们不能同时满足高效光吸收、电荷分离和提取、表面反应和操作稳定性的所有要求。本文综述了用于将太阳能转化为化学燃料的有前途的非氧化物半导体。强调了增加电荷传输和分离、加速跨各种界面的电荷转移动力学以及产生这些非氧化物光电极的长期耐久性的努力。作为筛选,
更新日期:2020-02-01
down
wechat
bug