当前位置: X-MOL 学术Cell Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons.
Cell Reports ( IF 8.8 ) Pub Date : 2019-12-24 , DOI: 10.1016/j.celrep.2019.11.068
Christian Ebner 1 , Claudia Clopath 2 , Peter Jedlicka 3 , Hermann Cuntz 4
Affiliation  

A large number of experiments have indicated that precise spike times, firing rates, and synapse locations crucially determine the dynamics of long-term plasticity induction in excitatory synapses. However, it remains unknown how plasticity mechanisms of synapses distributed along dendritic trees cooperate to produce the wide spectrum of outcomes for various plasticity protocols. Here, we propose a four-pathway plasticity framework that is well grounded in experimental evidence and apply it to a biophysically realistic cortical pyramidal neuron model. We show in computer simulations that several seemingly contradictory experimental landmark studies are consistent with one unifying set of mechanisms when considering the effects of signal propagation in dendritic trees with respect to synapse location. Our model identifies specific spatiotemporal contributions of dendritic and axo-somatic spikes as well as of subthreshold activation of synaptic clusters, providing a unified parsimonious explanation not only for rate and timing dependence but also for location dependence of synaptic changes.

中文翻译:

通过建模皮层锥体神经元的树突来统一兴奋性突触的长期可塑性规则。

大量实验表明,精确的尖峰时间,激发速率和突触位置决定了兴奋性突触中长期可塑性诱导的动力学。然而,尚不清楚沿树突状树分布的突触的可塑性机制如何协同作用以产生各种可塑性方案的广泛结果。在这里,我们提出了一种四路可塑性框架,该框架充分地基于实验证据,并将其应用于生物物理现实的皮质锥体神经元模型。我们在计算机模拟中显示,当考虑信号在树突树中相对于突触位置的传播影响时,一些看似矛盾的实验标志性研究与一套统一的机制是一致的。
更新日期:2019-12-25
down
wechat
bug