当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Chip-to-chip quantum teleportation and multi-photon entanglement in silicon
Nature Physics ( IF 19.6 ) Pub Date : 2019-12-23 , DOI: 10.1038/s41567-019-0727-x
Daniel Llewellyn , Yunhong Ding , Imad I. Faruque , Stefano Paesani , Davide Bacco , Raffaele Santagati , Yan-Jun Qian , Yan Li , Yun-Feng Xiao , Marcus Huber , Mehul Malik , Gary F. Sinclair , Xiaoqi Zhou , Karsten Rottwitt , Jeremy L. O’Brien , John G. Rarity , Qihuang Gong , Leif K. Oxenlowe , Jianwei Wang , Mark G. Thompson

Integrated optics provides a versatile platform for quantum information processing and transceiving with photons1,2,3,4,5,6,7,8. The implementation of quantum protocols requires the capability to generate multiple high-quality single photons and process photons with multiple high-fidelity operators9,10,11. However, previous experimental demonstrations were faced by major challenges in realizing sufficiently high-quality multi-photon sources and multi-qubit operators in a single integrated system4,5,6,7,8, and fully chip-based implementations of multi-qubit quantum tasks remain a significant challenge1,2,3. Here, we report the demonstration of chip-to-chip quantum teleportation and genuine multipartite entanglement, the core functionalities in quantum technologies, on silicon-photonic circuitry. Four single photons with high purity and indistinguishablity are produced in an array of microresonator sources, without requiring any spectral filtering. Up to four qubits are processed in a reprogrammable linear-optic quantum circuit that facilitates Bell projection and fusion operation. The generation, processing, transceiving and measurement of multi-photon multi-qubit states are all achieved in micrometre-scale silicon chips, fabricated by the complementary metal–oxide–semiconductor process. Our work lays the groundwork for large-scale integrated photonic quantum technologies for communications and computations.



中文翻译:

芯片中的芯片间量子隐形传态和多光子纠缠

集成光学器件为光子1,2,3,4,5,6,7,8的量子信息处理和收发提供了通用的平台。量子协议的实现需要具有生成多个高质量单光子和具有多个高保真算子9,10,11的过程光子的能力。但是,先前的实验演示面临着在单一集成系统4,5,6,7,8以及完全基于芯片的多量子位实现中实现足够高质量的多光子源和多量子位算子的主要挑战。量子任务仍然是一个巨大的挑战1,2,3。在这里,我们报告了硅光子电路上的芯片到芯片量子隐形传态和真正的多方纠缠(量子技术的核心功能)的演示。在微谐振器源阵列中产生四个具有高纯度和不可分辨性的单光子,而无需任何光谱过滤。在可重编程的线性光学量子电路中,最多可处理四个量子位,这有助于贝尔投影和融合操作。多光子多量子位态的产生,处理,收发和测量都是在微米级的硅芯片中完成的,该芯片是通过互补的金属-氧化物-半导体工艺制造的。我们的工作为大规模集成光子量子技术的通信和计算奠定了基础。

更新日期:2019-12-23
down
wechat
bug