当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High‐Speed Large‐Field Multifocal Illumination Fluorescence Microscopy
Laser & Photonics Reviews ( IF 11.0 ) Pub Date : 2019-12-23 , DOI: 10.1002/lpor.201900070
Zhenyue Chen 1, 2 , Benedict Mc Larney 3, 4 , Johannes Rebling 1, 2 , Xosé Luis Deán‐Ben 1, 2 , Quanyu Zhou 1, 2 , Sven Gottschalk 3 , Daniel Razansky 1, 2, 3, 4
Affiliation  

Scanning optical microscopy techniques are commonly restricted to a sub‐millimeter field‐of‐view (FOV) or otherwise employ slow mechanical translation, limiting their applicability for imaging fast biological dynamics occurring over large areas. A rapid scanning large‐field multifocal illumination (LMI) fluorescence microscopy technique is devised based on a beam‐splitting grating and an acousto‐optic deflector synchronized with a high‐speed camera to attain real‐time fluorescence microscopy over a centimeter‐scale FOV. Owing to its large depth of focus, the approach allows noninvasive visualization of perfusion across the entire mouse cerebral cortex, not achievable with conventional wide‐field fluorescence microscopy methods. The new concept can readily be incorporated into conventional wide‐field microscopes to mitigate image blur due to tissue scattering and attain optimal trade‐off between spatial resolution and FOV. It further establishes a bridge between conventional wide‐field macroscopy and laser scanning confocal microscopy, thus it is anticipated to find broad applicability in functional neuroimaging, in vivo cell tracking, and other applications looking at large‐scale fluorescent‐based biodynamics.

中文翻译:

高速大视野多焦点照明荧光显微镜

扫描光学显微镜技术通常仅限于亚毫米视野(FOV),否则会采用缓慢的机械平移,从而限制了其在成像大范围内发生的快速生物动力学时的适用性。基于分束光栅和与高速相机同步的声光偏转器,设计了一种快速扫描大视野多焦点照明(LMI)荧光显微镜技术,以在厘米级FOV上获得实时荧光显微镜。由于其聚焦深度较大,因此该方法可以无创地观察整个小鼠大脑皮层的灌注情况,这是传统的宽视野荧光显微镜方法无法实现的。这个新概念可以很容易地整合到传统的宽视野显微镜中,以减轻由于组织散射而引起的图像模糊,并在空间分辨率和FOV之间实现最佳平衡。它进一步建立了传统的宽视野宏观显微镜和激光扫描共聚焦显微镜之间的桥梁,因此有望在功能性神经成像,体内细胞追踪以及其他基于大型荧光生物动力学的应用中找到广泛的适用性。
更新日期:2019-12-23
down
wechat
bug