当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nonequilibrium physics in biology
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 2019-12-20 , DOI: 10.1103/revmodphys.91.045004
Xiaona Fang , Karsten Kruse , Ting Lu , Jin Wang

Life is characterized by a myriad of complex dynamic processes allowing organisms to grow, reproduce, and evolve. Physical approaches for describing systems out of thermodynamic equilibrium have been increasingly applied to living systems, which often exhibit phenomena not found in those traditionally studied in physics. Spectacular advances in experimentation during the last decade or two, for example, in microscopy, single-cell dynamics, in the reconstruction of subcellular and multicellular systems outside of living organisms, and in high throughput data acquisition, have yielded an unprecedented wealth of data on cell dynamics, genetic regulation, and organismal development. These data have motivated the development and refinement of concepts and tools to dissect the physical mechanisms underlying biological processes. Notably, landscape and flux theory as well as active hydrodynamic gel theory have proven useful in this endeavor. Together with concepts and tools developed in other areas of nonequilibrium physics, significant progress has been made in unraveling the principles underlying efficient energy transport in photosynthesis, cellular regulatory networks, cellular movements and organization, embryonic development and cancer, neural network dynamics, population dynamics and ecology, as well as aging, immune responses, and evolution. Here recent advances in nonequilibrium physics are reviewd and their application to biological systems is surveyed. Many of these results are expected to be important cornerstones as the field continues to build our understanding of life.

中文翻译:

生物学中的非平衡物理

生命的特征是无数复杂的动态过程,使生物得以生长,繁殖和进化。用于描述超出热力学平衡的系统的物理方法已越来越多地应用于有生命的系统,这些系统通常会表现出传统物理学中未发现的现象。在过去的一两个十年中,例如在显微镜,单细胞动力学,在生物体外部的亚细胞和多细胞系统的重建以及高通量数据采集方面的实验取得了惊人的进展,从而获得了前所未有的大量数据。细胞动力学,遗传调控和机体发育。这些数据推动了概念和工具的发展和完善,以剖析生物过程背后的物理机制。尤其,横向和通量理论以及主动流体动力凝胶理论已被证明可用于此工作。连同在非平衡物理其他领域中开发的概念和工具一起,在阐明光合作用中有效能量传输,细胞调节网络,细胞运动和组织,胚胎发育和癌症,神经网络动态,种群动态和生态,衰老,免疫反应和进化。在这里,对非平衡物理的最新进展进行了综述,并对它们在生物系统中的应用进行了综述。随着该领域继续加深我们对生活的理解,许多结果有望成为重要的基石。连同在非平衡物理其他领域中开发的概念和工具一起,在阐明光合作用中有效能量传输,细胞调节网络,细胞运动和组织,胚胎发育和癌症,神经网络动态,种群动态和生态,衰老,免疫反应和进化。在这里,对非平衡物理的最新进展进行了综述,并对它们在生物系统中的应用进行了综述。随着该领域继续加深我们对生活的理解,许多结果有望成为重要的基石。连同在非平衡物理其他领域中开发的概念和工具一起,在阐明光合作用中有效能量传输,细胞调节网络,细胞运动和组织,胚胎发育和癌症,神经网络动态,种群动态和生态,衰老,免疫反应和进化。在这里,对非平衡物理的最新进展进行了综述,并对它们在生物系统中的应用进行了综述。随着该领域继续加深我们对生活的理解,许多这些结果有望成为重要的基石。细胞调节网络,细胞运动和组织,胚胎发育和癌症,神经网络动态,种群动态和生态,以及衰老,免疫反应和进化。在这里,对非平衡物理的最新进展进行了综述,并对它们在生物系统中的应用进行了综述。随着该领域继续加深我们对生活的理解,许多结果有望成为重要的基石。细胞调节网络,细胞运动和组织,胚胎发育和癌症,神经网络动态,种群动态和生态,以及衰老,免疫反应和进化。在这里,对非平衡物理的最新进展进行了综述,并对它们在生物系统中的应用进行了综述。随着该领域继续加深我们对生活的理解,许多结果有望成为重要的基石。
更新日期:2019-12-20
down
wechat
bug