当前位置: X-MOL 学术Remote Sens. Environ. › 论文详情
A shadow constrained conditional generative adversarial net for SRTM data restoration
Remote Sensing of Environment ( IF 9.085 ) Pub Date : 2019-12-18 , DOI: 10.1016/j.rse.2019.111602
Guoshuai Dong; Weimin Huang; William A.P. Smith; Peng Ren

The original data produced by the Shuttle Radar Topography Mission (SRTM) tend to have an abundance of voids in mountainous areas where the elevation measurements are missing. In this paper, deep learning models are investigated for restoring SRTM data. To this end, we explore generative adversarial nets, which represent one state-of-the-art family of deep learning models. A conditional generative adversarial network (CGAN) is introduced as the baseline method for filling voids in incomplete SRTM data. The problem regarding shadow violation that possibly arises from the CGAN restored data is investigated. To address this deficiency, shadow geometric constraints based on shadow maps of satellite images are devised. In addition, a shadow constrained conditional generative adversarial network (SCGAN), which incorporates the shadow geometric constraints into the CGAN, is developed. Training the SCGAN model requires both the remote sensing observations (i.e., the original incomplete SRTM data and satellite images) and the ground truth data (i.e., the complete SRTM data, which are manually refined from the incomplete SRTM data with the reference of in-situ measurements). The integration of the multi-source training data enables the SCGAN model to be characterized by comprehensive information including both mountain shape variation and mountain shadow geometry. Experimental results validate the superiority of the SCGAN over the comparison methods, i.e., the interpolation, the convolutional neural network (CNN) and the baseline CGAN, in SRTM data restoration.

更新日期:2019-12-19

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
科研绘图
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug