当前位置: X-MOL 学术Chem. Soc. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-plane aligned assemblies of 1D-nanoobjects: recent approaches and applications.
Chemical Society Reviews ( IF 46.2 ) Pub Date : 2019-12-17 , DOI: 10.1039/c9cs00382g
Hebing Hu 1 , Shancheng Wang , Xueling Feng , Matthias Pauly , Gero Decher , Yi Long
Affiliation  

One-dimensional (1D) nanoobjects have strongly anisotropic physical properties which are averaged out and cannot be exploited in disordered systems. The goal of the present review is to describe the current methods for preparing macroscopic composite films in which the long axis of individual 1D-nanoobjects is more or less parallel to the x,y-plane of the substrate as well as to each other (alignment direction). Such structures are generally described as in-plane anisotropic and many of their physical properties show minima or maxima parallel to the alignment direction. Optical polarizers are a typical class of such materials, but anisotropic materials properties can enhance the performance of devices and materials over many length scales in various disciplines of materials science including electronic devices, environmental sensors, energy saving and energy generation applications, plasmonic devices, Surface-Enhanced Raman Scattering (SERS) and biological applications. The reviewed alignment methods fall into two categories: techniques in which all nanoobjects remain in the x,y-plane and the in-plane densities and alignment are controlled; and techniques allowing building complex architectures in which each stratum of multilayered or stacked films may differ in chemical nature or alignment direction or both. This review serves a purpose to provide a platform to inspire new alignment approaches with improved assembly quality and upscaling potential and new applications with enhanced performance by alignment.

中文翻译:

一维纳米物体的平面对齐组件:最新方法和应用。

一维(1D)纳米物体具有很强的各向异性物理特性,这些特性已被平均化,无法在无序系统中利用。本综述的目的是描述制备宏观复合膜的当前方法,其中单个一维纳米物体的长轴或多或少平行于基板的x,y平面以及彼此平行(对齐)。方向)。这样的结构通常被描述为面内各向异性的,并且它们的许多物理性质显示出平行于取向方向的最小值或最大值。光学偏振片是这类材料的典型类别,但是各向异性材料的特性可以在各种长度的材料科学领域(包括电子设备,环境传感器,节能和能源产生应用,等离子设备,表面增强拉曼散射(SERS)和生物学应用。审查的对准方法分为两类:一种技术,其中所有纳米物体都保留在x,y平面中,并且控制平面内的密度和对准;以及允许建立复杂体系结构的技术,在该体系结构中,多层或堆叠膜的每个层在化学性质或排列方向或两者上可能不同。这篇综述的目的是提供一个平台,以激发具有改进的装配质量和升级潜力的新对准方法,以及通过对准提高性能的新应用。审查的对准方法分为两类:一种技术,其中所有纳米物体都保留在x,y平面中,并且控制平面内的密度和对准;以及允许建立复杂体系结构的技术,在该体系结构中,多层或堆叠膜的每个层在化学性质或排列方向或两者上可能不同。这篇综述的目的是提供一个平台,以激发具有改进的装配质量和升级潜力的新对准方法,以及通过对准提高性能的新应用。审查的对准方法分为两类:一种技术,其中所有纳米物体都保留在x,y平面中,并且控制平面内的密度和对准;以及允许建立复杂体系结构的技术,在该体系结构中,多层或堆叠膜的每个层在化学性质或排列方向或两者上可能不同。这篇综述的目的是提供一个平台,以激发具有更高装配质量和升级潜力的新对准方法,以及通过对准提高性能的新应用。
更新日期:2020-02-13
down
wechat
bug