当前位置: X-MOL 学术Bone › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Regional changes in indices of bone strength of upper and lower limbs in response to high-intensity impact loading or high-intensity resistance training
Bone ( IF 4.1 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.bone.2019.115192
Conor Lambert 1 , Belinda R Beck 2 , Amy T Harding 1 , Steven L Watson 1 , Benjamin K Weeks 1
Affiliation  

It is well known that the bone response to physical activity is highly dependent on the nature of the loads imposed. Despite this, few direct comparisons of the effect of impact-style loading and resistance training on bone have been made. We therefore aimed to compare the effects of 10-month, twice-weekly, high-impact loading and 10-month, twice-weekly, high-intensity resistance training on indices of bone strength of both the upper and lower limbs of young adult women. Physically inactive, otherwise healthy, young adult women (18-30 years) with below average bone mass (T-score ≤ 0) were recruited as part of the OPTIMA-Ex trial. Testing included DXA- and pQCT-derived measures of bone mass and indices of bone strength and QUS-derived measures of bone quality of the dominant (D) and non-dominant (ND) upper (radius) and lower limbs (femoral neck, tibia, calcaneus). The present study examined those participants who completed the impact training (IT; n = 10) and resistance training (RT; n = 12) arms of the trial. Age differed between groups at baseline (IT = 23.2 ± 3.8 years, RT = 20.5 ± 1.8 years; p = 0.042). Compliance with the training programs did not differ (IT = 61.4 ± 15.1%, RT = 66.4 ± 11.2%, p = 0.381). Age and baseline differences in bone outcomes served as covariates for repeated measures and univariate ANCOVA conducted for dependent variables and percent change respectively. IT improved distal pQCT-derived bone mineral density (BMD) of the upper limb (ND radius: total BMD = 8.55 ± 2.26% versus 1.50 ± 2.04%, p = 0.040 and trabecular BMD = 1.86 ± 0.90% versus -1.30 ± 0.81%, p = 0.029) and lower limb (ND tibia trabecular BMD = 1.22 ± 0.55% versus -0.82 ± 0.50%, p = 0.017), more than RT. IT also improved upper limb bone strength index (BSI) (ND radius total BSI = 15.35 ± 2.83% versus 2.67 ± 2.55, p = 0.005) and lower limb BSI (D tibia total BSI = 5.16 ± 1.13% versus 0.37 ± 1.02%, p = 0.008; D tibia trabecular BSI = 3.93 ± 1.76% versus -2.84 ± 1.59, p = 0.014, ND tibia trabecular BSI = 3.57 ± 1.63% versus -3.15 ± 1.48%, p = 0.009) more than RT. Conversely, RT improved DXA-derived cortical volumetric BMD at the femoral neck more than IT (3.68 ± 1.99% versus -4.14 ± 2.20%, p = 0.021). Results suggest that IT and RT provide differing site-specific effects in both the upper and lower limbs, with superior bone responses observed at the distal segment from IT, while RT appeared to have greater effect on the shaft of the bone, on indices of bone-strength in young adult women.

中文翻译:

高强度冲击负荷或高强度抗阻训练后上、下肢骨强度指标的区域变化

众所周知,骨骼对身体活动的反应高度依赖于所施加负荷的性质。尽管如此,几乎没有直接比较冲击式负荷和阻力训练对骨骼的影响。因此,我们旨在比较 10 个月、每周两次的高冲击负荷和 10 个月、每周两次的高强度阻力训练对年轻成年女性上下肢骨强度指数的影响. 作为 OPTIMA-Ex 试验的一部分,招募了身体不活跃、其他方面健康、骨量低于平均水平(T 分数 ≤ 0)的年轻成年女性(18-30 岁)。测试包括 DXA 和 pQCT 衍生的骨量和骨强度指数以及 QUS 衍生的优势 (D) 和非优势 (ND) 上肢(桡骨)和下肢(股骨颈、胫骨、跟骨)。本研究检查了那些完成试验的冲击训练 (IT; n = 10) 和阻力训练 (RT; n = 12) 组的参与者。基线时各组之间的年龄不同(IT = 23.2 ± 3.8 岁,RT = 20.5 ± 1.8 岁;p = 0.042)。培训计划的遵守情况没有差异(IT = 61.4 ± 15.1%,RT = 66.4 ± 11.2%,p = 0.381)。骨骼结果的年龄和基线差异作为重复测量的协变量,并分别针对因变量和百分比变化进行单变量 ANCOVA。IT 改善了上肢远端 pQCT 衍生的骨矿物质密度 (BMD)(ND 半径:总 BMD = 8.55 ± 2.26% vs 1.50 ± 2.04%,p = 0.040 和小梁 BMD = 1.86 ± 0.90% vs -1.30 ± 0.81% , p = 0.029) 和下肢 (ND 胫骨小梁 BMD = 1.22 ± 0.55% vs -0.82 ± 0.50%, p = 0.017), 超过RT。IT 还改善了上肢骨强度指数 (BSI)(ND 半径总 BSI = 15.35 ± 2.83% 对 2.67 ± 2.55,p = 0.005)和下肢 BSI(D 胫骨总 BSI = 5.16 ± 1.13% 对 0.37 ± 1.02%, p = 0.008;D 胫骨小梁 BSI = 3.93 ± 1.76% 与 -2.84 ± 1.59,p = 0.014,ND 胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0. 0. 相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。IT 还改善了上肢骨强度指数 (BSI)(ND 半径总 BSI = 15.35 ± 2.83% 对 2.67 ± 2.55,p = 0.005)和下肢 BSI(D 胫骨总 BSI = 5.16 ± 1.13% 对 0.37 ± 1.02%, p = 0.008;D 胫骨小梁 BSI = 3.93 ± 1.76% 与 -2.84 ± 1.59,p = 0.014,ND 胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0. 0. 相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。IT 还改善了上肢骨强度指数 (BSI)(ND 半径总 BSI = 15.35 ± 2.83% 对 2.67 ± 2.55,p = 0.005)和下肢 BSI(D 胫骨总 BSI = 5.16 ± 1.13% 对 0.37 ± 1.02%, p = 0.008;D 胫骨小梁 BSI = 3.93 ± 1.76% 与 -2.84 ± 1.59,p = 0.014,ND 胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0. 0. 相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。55, p = 0.005) 和下肢 BSI (D 胫骨总 BSI = 5.16 ± 1.13% vs 0.37 ± 1.02%, p = 0.008; D 胫骨小梁 BSI = 3.93 ± 1.76% vs -2.84, ± 1.13%, ND 1.59胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0.009) 超过 RT。相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。55, p = 0.005) 和下肢 BSI (D 胫骨总 BSI = 5.16 ± 1.13% vs 0.37 ± 1.02%, p = 0.008; D 胫骨小梁 BSI = 3.93 ± 1.76% vs -2.84, ± 1.13%, ND 1.59胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0.009) 超过 RT。相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。ND 胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0.009) 超过 RT。相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。ND 胫骨小梁 BSI = 3.57 ± 1.63% 与 -3.15 ± 1.48%,p = 0.009) 超过 RT。相反,RT 改善股骨颈 DXA 衍生的皮质体积 BMD 比 IT 多(3.68 ± 1.99% 对 -4.14 ± 2.20%,p = 0.021)。结果表明,IT 和 RT 在上肢和下肢提供不同的部位特异性影响,在 IT 的远端部分观察到更好的骨反应,而 RT 似乎对骨干、骨指数有更大的影响- 年轻成年女性的力量。
更新日期:2020-03-01
down
wechat
bug