当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNA Hairpin Hybridization under Extreme Pressures: A Single-Molecule FRET Study.
The Journal of Physical Chemistry B ( IF 3.3 ) Pub Date : 2019-12-26 , DOI: 10.1021/acs.jpcb.9b10131
Hsuan-Lei Sung 1 , David J Nesbitt 1
Affiliation  

Organisms have evolved to live in a variety of complex environments, which clearly has required cellular biology to accommodate to extreme conditions of hydraulic pressure and elevated temperature. In this work, we exploit single-molecule Forster resonance energy transfer (FRET) spectroscopy to probe structural changes in DNA hairpins as a function of pressure and temperature, which allows us to extract detailed thermodynamic information on changes in free energy (ΔG°), free volume (ΔV°), enthalpy (ΔH°), and entropy (ΔS°) associated with DNA loop formation and sequence-dependent stem hybridization. Specifically, time-correlated single-photon counting experiments on freely diffusing 40A DNA hairpin FRET constructs are performed in a 50 μm × 50 μm square quartz capillary cell pressurized from ambient pressure up to 3 kbar. By pressure-dependent van't Hoff analysis of the equilibrium constants, ΔV° for hybridization of the DNA hairpin can be determined as a function of stem length (nstem = 7-10) with single base-pair resolution, which further motivates a simple linear deconstruction into additive stem (ΔV°stem = ΔV°bp x nstem) and loop (ΔV°loop) contributions. We find that increasing pressure destabilizes the DNA hairpin stem region [ΔV°bp = +1.98(16) cm3/(mol bp)], with additional positive free volume changes [ΔV°loop = +7.0(14) cm3/mol] we ascribe to bending and base stacking disruption of the 40-dA loop. From a van't Hoff temperature-dependent analysis of the DNA 40A hairpin equilibria, the data support a similar additive loop/stem deconstruction of enthalpic (ΔH° = ΔH°loop + ΔH°stem) and entropic (ΔS° = ΔS°loop + ΔS°stem) contributions, which permits insightful comparison with predictions from nearest-neighbor thermodynamic models for DNA duplex formation. In particular, the stem thermodynamics is consistent with exothermically favored (ΔH°stem < 0) and entropically penalized (ΔS°stem < 0) hydrogen bonding but with additional enthalpic (ΔH°loop > 0) and entropic (ΔS°loop > 0) contributions due to loop bending effects consistent with distortion of dA base stacking in the 40-dA linker.

中文翻译:

极端压力下的DNA发夹杂交:单分子FRET研究。

生物已经进化为生活在各种复杂的环境中,这显然需要细胞生物学来适应液压和高温的极端条件。在这项工作中,我们利用单分子福斯特共振能量转移(FRET)光谱来探测DNA发夹结构随压力和温度的变化,这使我们能够提取有关自由​​能变化(ΔG°)的详细热力学信息,与DNA环形成和依赖序列的茎杂交相关的自由体积(ΔV°),焓(ΔH°)和熵(ΔS°)。具体而言,在从环境压力升至3 kbar的50μm×50μm方形石英毛细管中,对自由扩散的40A DNA发夹FRET构建体进行时间相关的单光子计数实验。通过对平衡常数进行压力依赖的van't Hoff分析,可以确定DNA发夹杂交的ΔV°是茎长度(nstem = 7-10)的函数,具有单个碱基对的分辨率,这进一步促进了简单的分析。线性解构成加性词干(ΔV°stem =ΔV°bp x nstem)和循环(ΔV°loop)的贡献。我们发现增加的压力会破坏DNA发夹茎区域的稳定度[ΔV°bp = +1.98(16)cm3 /(mol bp)],而额外的正自由体积变化[ΔV°loop = +7.0(14)cm3 / mol]我们归因于40 dA环路的弯曲和基础堆叠破坏。根据DNA的40A发夹平衡的van't Hoff温度依赖性分析,数据支持类似的焓(ΔH°=ΔH°loop +ΔH°stem)和熵(ΔS°=ΔS°loop)的加法环/茎构解。 +ΔS°stem)贡献,可以与最近邻的热力学模型对DNA双链体形成的预测进行深入的比较。特别地,阀杆的热力学与放热有利的(ΔH°stem <0)和熵受罚的(ΔS°stem <0)氢键相符,但具有额外的焓(ΔH°loop> 0)和熵(ΔS°loop> 0)。由于环路弯曲效应而产生的影响与40-dA接头中dA基础堆叠的变形一致。
更新日期:2019-12-27
down
wechat
bug