当前位置: X-MOL 学术Environ. Microbiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microbial communities from Arctic marine sediments respond slowly to methane addition during ex situ enrichments.
Environmental Microbiology ( IF 5.1 ) Pub Date : 2020-01-13 , DOI: 10.1111/1462-2920.14895
Scott Klasek 1 , Marta E Torres 2 , Douglas H Bartlett 3 , Madeline Tyler 1 , Wei-Li Hong 4 , Frederick Colwell 1, 2
Affiliation  

Anaerobic methanotrophic archaea (ANME) consume methane in marine sediments, limiting its release to the water column, but their responses to changes in methane and sulfate supplies remain poorly constrained. To address how methane exposure may affect microbial communities and methane- and sulfur-cycling gene abundances in Arctic marine sediments, we collected sediments from offshore Svalbard that represent geochemical horizons where anaerobic methanotrophy is expected to be active, previously active, and long-inactive based on reaction-transport biogeochemical modelling of porewater sulfate profiles. Sediment slurries were incubated at in situ temperature and pressure with different added methane concentrations. Sediments from an active area of seepage began to reduce sulfate in a methane-dependent manner within months, preceding increased relative abundances of anaerobic methanotrophs ANME-1 within communities. In previously active and long-inactive sediments, sulfur-cycling Deltaproteobacteria became more dominant after 30 days, though these communities showed no evidence of methanotrophy after nearly 8 months of enrichment. Overall, enrichment conditions, but not methane, broadly altered microbial community structure across different enrichment times and sediment types. These results suggest that active ANME populations may require years to develop, and consequently microbial community composition may affect methanotrophic responses to potential large-scale seafloor methane releases in ways that provide insight for future modelling studies.

中文翻译:

来自北极海洋沉积物的微生物群落在非原位富集过程中对甲烷添加的反应缓慢。

厌氧甲烷营养古细菌(ANME)消耗海洋沉积物中的甲烷,限制了其向水柱的释放,但是它们对甲烷和硫酸盐供应变化的响应仍然受到限制。为了解决甲烷暴露如何影响北极海洋沉积物中的微生物群落以及甲烷和硫循环基因丰度的问题,我们从斯瓦尔巴群岛近海收集了代表地球化学视野的沉积物,预计厌氧甲烷沼气将处于活动状态,以前处于活动状态且长期处于非活动状态孔隙水硫酸盐剖面的反应-运输生物地球化学模拟研究。沉积物浆液在原位温度和压力下与不同的甲烷浓度一起孵育。在数月之内,渗流活跃区域的沉积物开始以甲烷依赖的方式还原硫酸盐,之前社区中厌氧甲烷营养生物ANME-1的相对丰度增加。在过去活跃和长期不活跃的沉积物中,硫循环的Deltaproteobacteria在30天后变得更加占优势,尽管这些群落在富集了近8个月后没有发现甲烷异养的迹象。总体而言,在不同的富集时间和沉积物类型下,富集条件(而非甲烷)会广泛改变微生物群落结构。这些结果表明,活跃的ANME种群可能需要数年的发展,因此微生物群落组成可能会影响对潜在大规模海底甲烷释放的甲烷营养反应,从而为未来的建模研究提供见识。30天后,硫循环的Deltaproteobacteria变得更加占优势,尽管这些群落在富集了近8个月后没有显示甲烷异养的迹象。总体而言,在不同的富集时间和沉积物类型下,富集条件(而非甲烷)会广泛改变微生物群落结构。这些结果表明,活跃的ANME种群可能需要数年的发展,因此微生物群落组成可能会影响对潜在大规模海底甲烷释放的甲烷营养反应,从而为未来的建模研究提供见识。30天后,硫循环的Deltaproteobacteria变得更加占优势,尽管这些群落在富集了近8个月后没有显示甲烷异养的迹象。总体而言,在不同的富集时间和沉积物类型下,富集条件(而非甲烷)会广泛改变微生物群落结构。这些结果表明,活跃的ANME种群可能需要数年的发展,因此微生物群落组成可能会影响对潜在大规模海底甲烷释放的甲烷营养反应,从而为未来的建模研究提供见识。在不同的富集时间和沉积物类型下,微生物群落结构发生了广泛变化。这些结果表明,活跃的ANME种群可能需要数年的时间才能发展起来,因此微生物群落组成可能会影响对潜在大规模海底甲烷释放的甲烷营养反应,从而为未来的建模研究提供见识。在不同的富集时间和沉积物类型下,微生物群落结构发生了广泛变化。这些结果表明,活跃的ANME种群可能需要数年的发展,因此微生物群落组成可能会影响对潜在大规模海底甲烷释放的甲烷营养反应,从而为未来的建模研究提供见识。
更新日期:2020-01-13
down
wechat
bug