当前位置: X-MOL 学术AlChE J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pressurized tubular solid oxide H2O/CO2 coelectrolysis cell for direct power‐to‐methane
AIChE Journal ( IF 3.7 ) Pub Date : 2020-01-03 , DOI: 10.1002/aic.16896
Yu Luo 1, 2 , Yixiang Shi 1 , Yanbo Chen 1 , Wenying Li 3 , Lilong Jiang 2 , Ningsheng Cai 1
Affiliation  

To improve the energy‐to‐CH4 efficiency and enhance renewable power utilization, we investigate direct Power‐to‐Methane at low inlet H2 content (25 vol%) in solid oxide electrolysis cell (SOEC). The synergy of the pressurized operation and the electricity input effectively enhances CH4 yield by one‐order of magnitude from 2.8% to 28.7% and the CO2‐to‐CH4 ratio from 4.4% to 39.5% in the H2‐reduced case, where the ratio of H2 consumption to total energy consumption decreases to 41% and the energy‐to‐CH4 efficiency increases to 53%. We develop a multiphysics tubular SOEC model to understand the intrinsic coupling between electrochemistry and heterogeneous catalytic chemistry. From the perspective of performance enhancement, geometry optimization, and thermal design, inhibiting CH4 production in the inlet gas‐controlled zone and promoting CH4 production synergistically in both the electrochemistry‐controlled zone and the temperature‐controlled zone is the key to improve the energy‐to‐CH4 efficiency.

中文翻译:

加压管式固体氧化物H2O / CO2电解槽,可直接发电为甲烷

为了提高能量转化为CH 4的效率并提高可再生能源的利用率,我们研究了固体氧化物电解池(SOEC)中低入口H 2含量(25%(体积))的直接甲烷转化。在减少H 2的情况下,加压操作和电力输入的协同作用可有效地将CH 4的产率从2.8%提高到28.7%,并且将CO 2与CH 4的比例从4.4%提高到39.5%。,其中H 2消耗量占总能量消耗的比例降低至41%,能量转化为CH 4效率提高到53%。我们开发了一个多物理场管状SOEC模型,以了解电化学与非均相催化化学之间的内在耦合。从性能增强,几何优化,和热设计的角度来看,抑制CH 4的生产在入口气体控制区和促进CH 4协同生产在两个电化学控制区和温度控制区是提高的关键CH 4的能量效率。
更新日期:2020-04-21
down
wechat
bug