当前位置: X-MOL 学术Microsc. Microanal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Processing Techniques for Scanning Electron Microscopy Imaging of Giant Cells from Giant Cell Tumors of Bone
Microscopy and Microanalysis ( IF 2.8 ) Pub Date : 2019-08-30 , DOI: 10.1017/s1431927619014855
Asit Ranjan Mridha 1 , Indu Barwal 2 , Abhishek Gupta 2 , Abdul Majeed 3 , Adarsh W Barwad 1 , Venkatesan Sampath Kumar 3 , Shivanand Gamanagatti 4 , Subhash Chandra Yadav 2
Affiliation  

Giant cell tumor (GCT) of bone is a common benign lesion that causes significant morbidity due to the failure of modern medical and surgical treatment. Surface ultra-structures of giant cells (GCs) may help in distinguishing aggressive tumors from indolent GC lesions. This study aimed to standardize scanning electron microscopic (SEM) imaging of GC from GCT of bone. Fresh GCT collected in Dulbecco's Modified Eagle Medium was washed to remove blood, homogenized, or treated with collagenase to isolate the GCs. Mechanically homogenized and collagenase-digested GCs were imaged on SEM after commonly used drying methodologies such as air-drying, tetramethylsilane (TMS)-drying, freeze-drying, and critical point-drying (CPD) for the optimization of sample processing. The collagenase-treated samples yielded a greater number of isolated GC and showed better surface morphology in comparison to mechanical homogenization. Air-drying was associated with marked cell shrinkage, and freeze-dried samples showed severe cell damage. TMS methodology partially preserved the cell contour and surface structures, although the cell shape was distorted. GC images with optimum surface morphology including membrane folding and microvesicular structures on the surface were observed only in collagenase-treated and critical point-dried samples. Collagenase digestion and critical point/TMS-drying should be performed for optimal SEM imaging of individual GCs.

中文翻译:

骨巨细胞瘤巨细胞扫描电镜成像处理技术

骨巨细胞瘤(GCT)是一种常见的良性病变,由于现代医学和外科治疗的失败而导致显着的发病率。巨细胞 (GC) 的表面超微结构可能有助于区分侵袭性肿瘤和惰性 GC 病变。本研究旨在标准化骨 GCT 的 GC 扫描电子显微镜 (SEM) 成像。在 Dulbecco's Modified Eagle 培养基中收集的新鲜 GCT 被洗涤以去除血液、均质化或用胶原酶处理以分离 GC。在常用的干燥方法(如空气干燥、四甲基硅烷 (TMS) 干燥、冷冻干燥和临界点干燥 (CPD) 等)以优化样品处理后,机械均质化和胶原酶消化的 GC 在 SEM 上成像。与机械均质化相比,胶原酶处理的样品产生更多数量的分离 GC,并显示出更好的表面形态。风干与显着的细胞收缩有关,冻干样品显示出严重的细胞损伤。TMS 方法部分保留了细胞轮廓和表面结构,尽管细胞形状被扭曲。仅在胶原酶处理和临界点干燥样品中观察到具有最佳表面形态的 GC 图像,包括表面上的膜折叠和微泡结构。应进行胶原酶消化和临界点/TMS 干燥,以获得单个 GC 的最佳 SEM 成像。TMS 方法部分保留了细胞轮廓和表面结构,尽管细胞形状被扭曲。仅在胶原酶处理和临界点干燥样品中观察到具有最佳表面形态的 GC 图像,包括表面上的膜折叠和微泡结构。应进行胶原酶消化和临界点/TMS 干燥,以获得单个 GC 的最佳 SEM 成像。TMS 方法部分保留了细胞轮廓和表面结构,尽管细胞形状被扭曲。仅在胶原酶处理和临界点干燥样品中观察到具有最佳表面形态的 GC 图像,包括表面上的膜折叠和微泡结构。应进行胶原酶消化和临界点/TMS 干燥,以获得单个 GC 的最佳 SEM 成像。
更新日期:2019-08-30
down
wechat
bug