当前位置: X-MOL 学术Microsc. Microanal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flower-Like MoS2 for Next-Generation High-Performance Energy Storage Device Applications
Microscopy and Microanalysis ( IF 2.8 ) Pub Date : 2019-08-27 , DOI: 10.1017/s143192761901479x
Sumit Majumder 1 , Sangam Banerjee 1
Affiliation  

Here, a well crystalline 3D flower-like structured MoS2 (~420 nm) has been successfully synthesized on a large scale by a simple hydrothermal technique. The evolution of morphology in the formation process has also been investigated. The crystallinity, purity, and morphology of the sample are characterized by powder X-ray diffraction, Fourier-transform infrared spectroscopy, fieldemission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) techniques. The FESEM and TEM images reveal that the sample exhibits a uniform 3D flower-like microsphere shape with folded nanosheets, which are stretched out along the edge of the microsphere. The electrochemical performance of the sample has been investigated by cyclic voltammogram, galvanostatic chargedischarge, and electrochemical impedance spectroscopy studies. The results of the electrochemical analysis suggest that the material delivers a maximum specific capacitance (Csp) of 350 F/g at a discharge current density of 0.25 A/g with energy density 17.5 Wh/kg. It also exhibits good capability and excellent cyclic stability (94% capacity retention after 1,000 cycles in 1 A/g) owing to the coupling effect of electrical conductivity with the interesting morphology and larger active surface area. Hence, the sample may be used as a promising electrode material for high-performance energy storage devices.

中文翻译:

用于下一代高性能储能设备应用的花状 MoS2

在这里,结晶良好的 3D 花状结构 MoS2(~420 nm) 已通过简单的水热技术成功地大规模合成。还研究了形成过程中形态的演变。样品的结晶度、纯度和形态通过粉末 X 射线衍射、傅里叶变换红外光谱、场发射扫描电子显微镜 (FESEM) 和透射电子显微镜 (TEM) 技术进行表征。FESEM 和 TEM 图像显示,样品呈现出均匀的 3D 花状微球形状,带有折叠的纳米片,这些纳米片沿着微球的边缘伸展。采用循环伏安法、恒电流法研究了样品的电化学性能放电和电化学阻抗谱研究。电化学分析结果表明该材料具有最大比电容 (Csp) 为 350 F/g,放电电流密度为 0.25 A/g,能量密度为 17.5 Wh/kg。由于电导率与有趣的形态和更大的活性表面积的耦合效应,它还表现出良好的性能和优异的循环稳定性(在 1 A/g 下 1,000 次循环后容量保持率为 94%)。因此,该样品可用作高性能储能装置的有前途的电极材料。
更新日期:2019-08-27
down
wechat
bug